Topic: sample-preparation

Battery research with a Scanning Electron Microscope: inspecting one layer at a time

By Luigi Raspolini - August 8, 2019

Batteries revolutionized the world of electronics by enabling us to carry an energy reserve in our pockets. Miniaturization and efficiency are the two key words when it comes to new developments in this field, impacting with the battery materials’ properties and stretching their limits. Let’s take a look at how researchers characterize materials and gather relevant information about batteries using scanning electron microscopy (SEM).

Batteries revolutionized the world of electronics by enabling us to carry an energy reserve in our pockets. Miniaturization and efficiency are the two key words when it comes to new developments in this field, impacting with the battery materials’ properties and stretching their limits. Let’s take a look at how researchers characterize materials and gather relevant information about batteries using scanning electron microscopy (SEM).

Read more

What is depth of field and how can I optimize it in a scanning electron microscope?

By Luigi Raspolini - July 25, 2019

Imaging with a scanning electron microscope (SEM) consists of taking pictures of small features. So why not consider a comparison with photography? Let’s analyze how similar the behaviors of a SEM and a camera are when it comes to focusing on your subject, and what the exact definition of depth of field is.

Imaging with a scanning electron microscope (SEM) consists of taking pictures of small features. So why not consider a comparison with photography? Let’s analyze how similar the behaviors of a SEM and a camera are when it comes to focusing on your subject, and what the exact definition of depth of field is.

Read more

How SEM helps research polymers characteristics, properties, and uses

By Luigi Raspolini - July 11, 2019

Polymers have many uses and applications: engineered combinations of monomers produce a nearly infinite number of molecules with different properties, which are determined by the chemical composition and structure of the molecule. The form of the molecule has a big influence on how the polymer will behave when exposed to different external forces. In this blog, you’ll find practical examples of how Scanning Electron Microscopes (SEMs) can provide unexpected results.

Polymers have many uses and applications: engineered combinations of monomers produce a nearly infinite number of molecules with different properties, which are determined by the chemical composition and structure of the molecule. The form of the molecule has a big influence on how the polymer will behave when exposed to different external forces. In this blog, you’ll find practical examples of how Scanning Electron Microscopes (SEMs) can provide unexpected results.

Read more

Sample preparation techniques for SEM to neutralize the effect of vacuum

By Luigi Raspolini - May 23, 2019

Scanning electron microscopes (SEM) scan the surface of the sample with an electron beam, collecting reflected electrons which carry information about the material the electrons interact with. If gas is in the sample chamber, its atoms interact with the beam, partly deflecting electrons and adding noise to the image. 

This is the reason why vacuum must be achieved in SEM before imaging. But while vacuum is crucial for proper analysis, it can also have a negative effect on certain types of materials. Read this blog to learn how you can neutralize vacuum and keep your samples intact.

Scanning electron microscopes (SEM) scan the surface of the sample with an electron beam, collecting reflected electrons which carry information about the material the electrons interact with. If gas is in the sample chamber, its atoms interact with the beam, partly deflecting electrons and adding noise to the image. 

This is the reason why vacuum must be achieved in SEM before imaging. But while vacuum is crucial for proper analysis, it can also have a negative effect on certain types of materials. Read this blog to learn how you can neutralize vacuum and keep your samples intact.

Read more

Sample tilting in scanning electron microscopy: how to keep the area of interest within the field of view

By Luigi Raspolini - April 18, 2019

Certain samples are tricky to image. Sometimes, even the best sample preparation will be no help in finding the results you need. Surface roughness and features on top of the sample might hide the specific area of interest, which could contain crucial information about surface defects or characteristics of the imaged material. In cases like this, you need a new point of view. Read this blog to discover how you can get just that.

Certain samples are tricky to image. Sometimes, even the best sample preparation will be no help in finding the results you need. Surface roughness and features on top of the sample might hide the specific area of interest, which could contain crucial information about surface defects or characteristics of the imaged material. In cases like this, you need a new point of view. Read this blog to discover how you can get just that.

Read more

Expert sample preparation techniques for SEM

By Luigi Raspolini - April 11, 2019

When using a scanning electron microscope (SEM) for the first time, you might have doubts about what can be imaged. You might also struggle to get the image quality you were expecting. Luckily, you can easily improve your results by following the simple yet powerful sample preparation techniques for SEM in this blog. Read on! 

When using a scanning electron microscope (SEM) for the first time, you might have doubts about what can be imaged. You might also struggle to get the image quality you were expecting. Luckily, you can easily improve your results by following the simple yet powerful sample preparation techniques for SEM in this blog. Read on! 

Read more

Microscopic investigation of embedded samples

By Karl Kersten - January 31, 2019

The purpose of embedding is to protect fragile or coated materials during preparation, and to obtain good edge retention. Embedding is also used to produce specimens of a uniform size, such as minerals, clay or other particles and can also be used to section a material and investigate its interior.

The purpose of embedding is to protect fragile or coated materials during preparation, and to obtain good edge retention. Embedding is also used to produce specimens of a uniform size, such as minerals, clay or other particles and can also be used to section a material and investigate its interior.

Read more

Why SEM is a valuable technique for nanoparticle characterization

By Antonis Nanakoudis - January 10, 2019

The continuous increase of microscopic particles’ use in a huge range of applications has created the need of accurate control of their properties. I will explain why the use of precise monitoring and characterization of particles is required and how scanning electron microscopy can prove to be a valuable characterization method for you. Especially due to its versatility and superior spatial resolution.   

The continuous increase of microscopic particles’ use in a huge range of applications has created the need of accurate control of their properties. I will explain why the use of precise monitoring and characterization of particles is required and how scanning electron microscopy can prove to be a valuable characterization method for you. Especially due to its versatility and superior spatial resolution.   

Read more

Imaging fibers with a SEM: how to obtain a flawless quality analysis

By Karl Kersten - December 6, 2018

In our daily life, we make use of a large amount of objects and devices that are produced from fibers. Fibers are usually imaged in a scanning electron microscope (SEM), which provides high-resolution images, elemental analysis, and the possibility of automatically measuring thousands of fibers in mere minutes.

But in some cases, imaging fibers with a SEM also presents challenges, as the nature of some fibers might compromise the quality of your analysis. With this in mind, this blog describes how you can obtain a high analysis quality through proper SEM configuration and sample preparation. 

In our daily life, we make use of a large amount of objects and devices that are produced from fibers. Fibers are usually imaged in a scanning electron microscope (SEM), which provides high-resolution images, elemental analysis, and the possibility of automatically measuring thousands of fibers in mere minutes.

But in some cases, imaging fibers with a SEM also presents challenges, as the nature of some fibers might compromise the quality of your analysis. With this in mind, this blog describes how you can obtain a high analysis quality through proper SEM configuration and sample preparation. 

Read more

Sample preparation: how to disperse powder for amazing SEM images

By Willem van Zyl - November 16, 2018

The ability to analyze particles is becoming increasingly more important due to the rising prominence of additive manufacturing, leading to more stringent quality requirements for industrial manufacturers. Beyond maximizing yields, manufacturers need to ensure that their processes consistently deliver particles that have the appropriate size and morphology.

The ability to analyze particles is becoming increasingly more important due to the rising prominence of additive manufacturing, leading to more stringent quality requirements for industrial manufacturers. Beyond maximizing yields, manufacturers need to ensure that their processes consistently deliver particles that have the appropriate size and morphology.

Read more

Press Room | Privacy Policy | Terms of Use | Sitemap |