Topic: materials-science

How scanning electron microscopy is used for cosmetics research and development

By Karl Kersten - Mar 29, 2018

Since ancient Egyptian times, cosmetic products have been used to enhance the human appearance. Research around cosmetics therefore deals not only with the development of new substances and the analysis and enhancement of existing ones, but also with the interaction of components with tissue. In this short blog, we introduce you to three examples that show the link between research within the cosmetic industry and scanning electron microscopy (SEM).

 

Since ancient Egyptian times, cosmetic products have been used to enhance the human appearance. Research around cosmetics therefore deals not only with the development of new substances and the analysis and enhancement of existing ones, but also with the interaction of components with tissue. In this short blog, we introduce you to three examples that show the link between research within the cosmetic industry and scanning electron microscopy (SEM).

 

Read more

What is additive manufacturing technology? How does the process work?

By Antonis Nanakoudis - Mar 22, 2018

Additive manufacturing is a relatively new manufacturing approach that has attracted the attention of many people and industries around the world due to its unlimited and promising potential. In this blog we will describe what Additive Manufacturing (AM) is and how it works and in a follow-up blog we will explain how SEM analysis can assist in improving the quality of the AM processes.

Additive manufacturing is a relatively new manufacturing approach that has attracted the attention of many people and industries around the world due to its unlimited and promising potential. In this blog we will describe what Additive Manufacturing (AM) is and how it works and in a follow-up blog we will explain how SEM analysis can assist in improving the quality of the AM processes.

Read more

How SEM helps perform automated quality control on phosphate coatings

By Karl Kersten - Mar 16, 2018

We are surrounded by products that, for either decorative or functional purposes, are covered with coatings; from paintings and lacquers, to adhesive or protective coatings, optical, catalytic or insulating coatings. Of all these coatings, conversion phosphate coatings play an important role, especially in the automotive industry: they are used for corrosion resistance and lubricity. Since these coatings are used for critical parts, the coating process must undergo thorough quality checks. These checks consist of the analysis of the morphology of the coating as well as the percentage of coverage. In this blog, we describe and analyze how automated tools combined with SEMs can be helpful in quality checking phosphate coatings.

We are surrounded by products that, for either decorative or functional purposes, are covered with coatings; from paintings and lacquers, to adhesive or protective coatings, optical, catalytic or insulating coatings. Of all these coatings, conversion phosphate coatings play an important role, especially in the automotive industry: they are used for corrosion resistance and lubricity. Since these coatings are used for critical parts, the coating process must undergo thorough quality checks. These checks consist of the analysis of the morphology of the coating as well as the percentage of coverage. In this blog, we describe and analyze how automated tools combined with SEMs can be helpful in quality checking phosphate coatings.

Read more

SEM analysis of PVDF-HFP nanofibers for the fabrication of energy harvesters

By Karl Kersten - Mar 8, 2018

Nowadays, energy harvesting is seeing an increasing interest from the research community, a fact that is confirmed by the rising number of publications. Energy harvesting has a wide range of applications, ranging from portable electronics, such as wristbands, to implanted medical devices like pacemakers. In this field, researchers are focusing their attention on the development of new energy harvesters that satisfy strict requirements: they need to be light and small, but also cheap and highly portable. In this blog, we discuss the fabrication of energy harvesters made from PVDF-HFP nanofibers on PDMS and SF substrates. We investigate how these energy harvesters are characterized and what the role of SEM is in this study.

Nowadays, energy harvesting is seeing an increasing interest from the research community, a fact that is confirmed by the rising number of publications. Energy harvesting has a wide range of applications, ranging from portable electronics, such as wristbands, to implanted medical devices like pacemakers. In this field, researchers are focusing their attention on the development of new energy harvesters that satisfy strict requirements: they need to be light and small, but also cheap and highly portable. In this blog, we discuss the fabrication of energy harvesters made from PVDF-HFP nanofibers on PDMS and SF substrates. We investigate how these energy harvesters are characterized and what the role of SEM is in this study.

Read more

SEM and fiber analysis for filtration systems quality control

By Luigi Raspolini - Feb 16, 2018

The production of filters and membranes undergoes several quality control steps to ensure that the properties of the product are up to specification. Different tools can be used for such analysis, but only one can provide the best results. Find out in this blog how Scanning Electron Microscopes (SEM) can be used to investigate imperfections in metallic filters.

The production of filters and membranes undergoes several quality control steps to ensure that the properties of the product are up to specification. Different tools can be used for such analysis, but only one can provide the best results. Find out in this blog how Scanning Electron Microscopes (SEM) can be used to investigate imperfections in metallic filters.

Read more

How electron microscopy fuels the development of eco-friendly polymers

By Luigi Raspolini - Oct 12, 2017

Thermosetting polymers are widely used in modern industry due to their specific chemical and physical properties. With a wide range of applications, from components of huge aircraft to small electronics, epoxies are one of the main products of the polymers industry. This blog will focus on how these materials are improved and made eco-friendly, by making use of a scanning electron microscope (SEM).

Thermosetting polymers are widely used in modern industry due to their specific chemical and physical properties. With a wide range of applications, from components of huge aircraft to small electronics, epoxies are one of the main products of the polymers industry. This blog will focus on how these materials are improved and made eco-friendly, by making use of a scanning electron microscope (SEM).

Read more

Scanning electron microscopy analysis of polymer coatings of stents

By Karl Kersten - Oct 5, 2017

The development of polymers and their diverse range of applications is a wide research field. Polymer materials became prevalent in implantable medical devices through processing capabilities in a wide variety of physical and chemical properties, as well as biocompatibility. This article describes how polymer coatings are used in the fabrication of drug-eluting coronary stents and how scanning electron microscopy (SEM) helps analyze the performance of these coatings in great detail. 

The development of polymers and their diverse range of applications is a wide research field. Polymer materials became prevalent in implantable medical devices through processing capabilities in a wide variety of physical and chemical properties, as well as biocompatibility. This article describes how polymer coatings are used in the fabrication of drug-eluting coronary stents and how scanning electron microscopy (SEM) helps analyze the performance of these coatings in great detail. 

Read more

Why hi-tech textile engineering requires SEM analysis

By Luigi Raspolini - Sep 28, 2017

It’s been a long time since the textile industry relied exclusively on natural fibers. Over the decades, synthetic fibers have proven to be cheaper, easier to produce and often perform better. At the same time, chemical treatments have been developed that improve the smoothness and the resistance of both natural and synthetic fibers, which has resulted in higher quality products. Read this blog for more information on how electron microscopy can play a fundamental role in this development process.

It’s been a long time since the textile industry relied exclusively on natural fibers. Over the decades, synthetic fibers have proven to be cheaper, easier to produce and often perform better. At the same time, chemical treatments have been developed that improve the smoothness and the resistance of both natural and synthetic fibers, which has resulted in higher quality products. Read this blog for more information on how electron microscopy can play a fundamental role in this development process.

Read more

How SEM helps discover suitable corrosion inhibitors

By Karl Kersten - Jun 12, 2017

Many industries would benefit from the inhibition of corrosion in metals. In the materials science field, scientists are therefore exploring ways to prevent or reduce corrosion. Many studies looking for suitable corrosion inhibitors have been carried out.

However, most of the inhibitors discovered and developed during those studies were synthetic chemicals, which are very expensive, and hazardous to the environment. Due to the characteristics of these chemicals, studies were carried out to investigate and analyze natural products that could be used as an anti-corrosion agent. SEM technology helped conduct these studies in an effective manner, something we will describe further in this article.

Many industries would benefit from the inhibition of corrosion in metals. In the materials science field, scientists are therefore exploring ways to prevent or reduce corrosion. Many studies looking for suitable corrosion inhibitors have been carried out.

However, most of the inhibitors discovered and developed during those studies were synthetic chemicals, which are very expensive, and hazardous to the environment. Due to the characteristics of these chemicals, studies were carried out to investigate and analyze natural products that could be used as an anti-corrosion agent. SEM technology helped conduct these studies in an effective manner, something we will describe further in this article.

Read more

Why SEM is the go-to technology for microfabrication evaluation

By Jake Wilkinson - May 19, 2017

The world of microfabrication is in a constant state of flux. With new technologies, new applications and more difficult problems to be solved, microfabrication is developing at such a speed that it will soon touch all our lives. In the past, microfabrication has been limited to using carbon and semi-conductor materials. But now, new commercial laser techniques, such as those used in the Technology & Applications Center (TAC) at Newport Corporation, are expanding the scope of microfabrication. The range of materials that can be worked on has been extended into polymers, composites, dielectrics and even ceramics. 

The world of microfabrication is in a constant state of flux. With new technologies, new applications and more difficult problems to be solved, microfabrication is developing at such a speed that it will soon touch all our lives. In the past, microfabrication has been limited to using carbon and semi-conductor materials. But now, new commercial laser techniques, such as those used in the Technology & Applications Center (TAC) at Newport Corporation, are expanding the scope of microfabrication. The range of materials that can be worked on has been extended into polymers, composites, dielectrics and even ceramics. 

Read more

Press Room | Privacy Policy | Terms of Use | Sitemap |