Blog

How electron microscopy fuels the development of eco-friendly polymers

By Luigi Raspolini - May 16, 2019

Thermosetting polymers are widely used in modern industry due to their specific chemical and physical properties. With a wide range of applications, from components of huge aircraft to small electronics, epoxies are one of the main products of the polymers industry. This blog will focus on how these polymers are improved and made eco-friendly, by making use of a scanning electron microscope (SEM).

Thermosetting polymers are widely used in modern industry due to their specific chemical and physical properties. With a wide range of applications, from components of huge aircraft to small electronics, epoxies are one of the main products of the polymers industry. This blog will focus on how these polymers are improved and made eco-friendly, by making use of a scanning electron microscope (SEM).

Read more

Spot size in scanning electron microscopy (SEM): why it matters!

By Antonis Nanakoudis - May 9, 2019

Scanning electron microscopes have emerged as a very valuable characterization method in recent years, following the major technological developments and the continuous shrinking of material dimensions. SEMs are versatile tools that allow users to perform many different types of analyses on a wide range of materials and to achieve the best results, users should carefully select the main microscope settings. One of those settings is the spot size, i.e. the diameter of the probe at the sample. In this blog, I explain how to adjust the spot size in a SEM — and how to achieve the right balance between high-resolution imaging and a high beam current to get the results you’re looking for.

Scanning electron microscopes have emerged as a very valuable characterization method in recent years, following the major technological developments and the continuous shrinking of material dimensions. SEMs are versatile tools that allow users to perform many different types of analyses on a wide range of materials and to achieve the best results, users should carefully select the main microscope settings. One of those settings is the spot size, i.e. the diameter of the probe at the sample. In this blog, I explain how to adjust the spot size in a SEM — and how to achieve the right balance between high-resolution imaging and a high beam current to get the results you’re looking for.

Read more

SEM and TEM: what's the difference?

By Antonis Nanakoudis - May 8, 2019

Electron microscopes have emerged as a powerful tool for the characterization of a wide range of materials. Their versatility and extremely high spatial resolution render them a very valuable tool for many applications. The two main types of electron microscopes are the Transmission Electron Microscope (TEM) and the Scanning Electron Microscope (SEM). In this blog we briefly describe their similarities and differences.

Electron microscopes have emerged as a powerful tool for the characterization of a wide range of materials. Their versatility and extremely high spatial resolution render them a very valuable tool for many applications. The two main types of electron microscopes are the Transmission Electron Microscope (TEM) and the Scanning Electron Microscope (SEM). In this blog we briefly describe their similarities and differences.

Read more

Why hi-tech textile engineering requires SEM for fiber analysis

By Luigi Raspolini - April 25, 2019

It’s been a long time since the textile industry relied exclusively on natural fibers. Over the decades, synthetic fibers have proven to be cheaper, easier to produce and often perform better. At the same time, chemical treatments have been developed that improve the smoothness and the resistance of both natural and synthetic fibers, which has resulted in higher quality products. Read this blog for more information on how electron microscopy can play a fundamental role in the textile engineering and fiber analysis process.

It’s been a long time since the textile industry relied exclusively on natural fibers. Over the decades, synthetic fibers have proven to be cheaper, easier to produce and often perform better. At the same time, chemical treatments have been developed that improve the smoothness and the resistance of both natural and synthetic fibers, which has resulted in higher quality products. Read this blog for more information on how electron microscopy can play a fundamental role in the textile engineering and fiber analysis process.

Read more

Sample tilting in scanning electron microscopy: how to keep the area of interest within the field of view

By Luigi Raspolini - April 18, 2019

Certain samples are tricky to image. Sometimes, even the best sample preparation will be no help in finding the results you need. Surface roughness and features on top of the sample might hide the specific area of interest, which could contain crucial information about surface defects or characteristics of the imaged material. In cases like this, you need a new point of view. Read this blog to discover how you can get just that.

Certain samples are tricky to image. Sometimes, even the best sample preparation will be no help in finding the results you need. Surface roughness and features on top of the sample might hide the specific area of interest, which could contain crucial information about surface defects or characteristics of the imaged material. In cases like this, you need a new point of view. Read this blog to discover how you can get just that.

Read more

Expert sample preparation techniques for SEM

By Luigi Raspolini - April 11, 2019

When using a scanning electron microscope (SEM) for the first time, you might have doubts about what can be imaged. You might also struggle to get the image quality you were expecting. Luckily, you can easily improve your results by following the simple yet powerful sample preparation techniques for SEM in this blog. Read on! 

When using a scanning electron microscope (SEM) for the first time, you might have doubts about what can be imaged. You might also struggle to get the image quality you were expecting. Luckily, you can easily improve your results by following the simple yet powerful sample preparation techniques for SEM in this blog. Read on! 

Read more

Desktop SEM electron sources: why CeB6 is the right choice

By Karl Kersten - April 4, 2019

If you’re looking for a scanning electron microscope (SEM), you probably know by now that the electron source is one of the most important parts of the system. In a previous blog, we talked about the properties of three different electron sources: the Tungsten, CeB6 and FEG sourcesIn this blog, we’ll take a closer look at Tungsten and CeB6 electron sources.

If you’re looking for a scanning electron microscope (SEM), you probably know by now that the electron source is one of the most important parts of the system. In a previous blog, we talked about the properties of three different electron sources: the Tungsten, CeB6 and FEG sourcesIn this blog, we’ll take a closer look at Tungsten and CeB6 electron sources.

Read more

FEG vs. Tungsten source in a scanning electron microscope (SEM): what’s the difference?

By Kay Mam - March 28, 2019

After few years of operating a transmission electron microscope (TEM) in my postgraduate studies, in 2006 I started my career in electron microscopy as an SEM operator for a biological and medical research center in York (United Kingdom). Not knowing how to operate an SEM before, I found it relatively easy to switch from TEM to SEM.

After few years of operating a transmission electron microscope (TEM) in my postgraduate studies, in 2006 I started my career in electron microscopy as an SEM operator for a biological and medical research center in York (United Kingdom). Not knowing how to operate an SEM before, I found it relatively easy to switch from TEM to SEM.

Read more
Topics: FEG

How a microfabrication researcher uses SEM as a technique to verify nanoscale structures

By Jake Wilkinson - March 21, 2019

Microfabrication, the creation of microscale structures and features, is an essential technique for the creation of next-generation semiconductors, processors and the ‘lab-on-a-chip’ microfluidic systems found in chemical analysis systems that can fit in the palm of your hand. 

Microfabrication, the creation of microscale structures and features, is an essential technique for the creation of next-generation semiconductors, processors and the ‘lab-on-a-chip’ microfluidic systems found in chemical analysis systems that can fit in the palm of your hand. 

Read more

How scanning electron microscopy impacts dental studies

By Karl Kersten - March 13, 2019

Microscopy is known to be a versatile tool in dental studies. Not only is optical microscopy used in day-to-day practices in dental clinics, but due to the surface information electron microscopy offers, it is used within a large variety of research subjects. With the following examples we want to offer more insights into how in detail scanning electron microscopy (SEM) is utilized within various dental studies.

Microscopy is known to be a versatile tool in dental studies. Not only is optical microscopy used in day-to-day practices in dental clinics, but due to the surface information electron microscopy offers, it is used within a large variety of research subjects. With the following examples we want to offer more insights into how in detail scanning electron microscopy (SEM) is utilized within various dental studies.

Read more
Topics: Life Sciences

Press Room | Privacy Policy | Terms of Use | Sitemap |