Karl Kersten

Karl Kersten is head of the Application team at Thermo Fisher Scientific, the world leader in serving science. He is passionate about the Thermo Fisher Scientific product and likes converting customer requirements into product or feature specifications so customers can achieve their goals.

Backscattered electron images: how to improve their quality

By Karl Kersten - Sep 21, 2018

Backscatter electrons (BSEs) carry information on the material of the sample. Obtaining high-quality images with a backscattered electron detector depends on many factors, such as the conductivity of the sample, its morphology and composition, the type of BSE detector and the electronics. Given a fixed system with the same detector and electronics— and the same sample, we analyzed the factors that play a role in the quality of a BSE image. Beginning with the number of integrating frames and beam intensity, in this blog we will also discuss the roles of the working distance and the chamber pressure.

Backscatter electrons (BSEs) carry information on the material of the sample. Obtaining high-quality images with a backscattered electron detector depends on many factors, such as the conductivity of the sample, its morphology and composition, the type of BSE detector and the electronics. Given a fixed system with the same detector and electronics— and the same sample, we analyzed the factors that play a role in the quality of a BSE image. Beginning with the number of integrating frames and beam intensity, in this blog we will also discuss the roles of the working distance and the chamber pressure.

Read more

STOP outsourcing your scanning electron microscopy research — get your own SEM!

By Karl Kersten - Sep 6, 2018

Are you a lab operator who wants to stop outsourcing your scanning electron microscopy jobs and buy your own Scanning Electron Microscope? Then you’ve probably already calculated that a personal SEM is a worthwhile capital investment. But the operational costs of SEM are just as important too: all the ongoing equipment expenses related to an SEM like the facilities, its maintenance, and operators.

Are you a lab operator who wants to stop outsourcing your scanning electron microscopy jobs and buy your own Scanning Electron Microscope? Then you’ve probably already calculated that a personal SEM is a worthwhile capital investment. But the operational costs of SEM are just as important too: all the ongoing equipment expenses related to an SEM like the facilities, its maintenance, and operators.

Read more

Electron lenses and aberrations: what affects the resolution in electron microscopes?

By Karl Kersten - Aug 30, 2018

Resolution is one of the most important parameters in a scanning electron microscope (SEM). The lower the resolution, the smaller the features that can be seen. The resolution, which is typically not defined (and therefore measured) in a unique way, depends on the size of the beam when focused on the sample.

Resolution is one of the most important parameters in a scanning electron microscope (SEM). The lower the resolution, the smaller the features that can be seen. The resolution, which is typically not defined (and therefore measured) in a unique way, depends on the size of the beam when focused on the sample.

Read more

Why SEM is the most suitable method for fiber analysis

By Karl Kersten - Aug 23, 2018

Fibers are all around us. Different types of fibers exist, but in most cases we do not notice them because they are used in a product. In case an object is much longer as it is wide we consider it a fiber. Fibers have specific properties for the product in which they are used. This blog will describe the different ways these fibers can be classified and how their performance can best be analysed. Hint: it has something to do with putting fibers under a specific type of microscope. You're about to discover the most suitable method for fiber analysis, so do read on!

Fibers are all around us. Different types of fibers exist, but in most cases we do not notice them because they are used in a product. In case an object is much longer as it is wide we consider it a fiber. Fibers have specific properties for the product in which they are used. This blog will describe the different ways these fibers can be classified and how their performance can best be analysed. Hint: it has something to do with putting fibers under a specific type of microscope. You're about to discover the most suitable method for fiber analysis, so do read on!

Read more

Automated scanning electron microscopy (SEM) imaging: how it's used

By Karl Kersten - Aug 16, 2018

In a previous blog, we described how automating scanning electron microscopy (SEM) imaging saves researchers and operators valuable time. A lot of scanning electron microscope users use this for a wide range of purposes. This blog shows an example of how automated SEM imaging is used in the field: it details performing an automated Laser-Induced Damage Threshold test (LIDT).

In a previous blog, we described how automating scanning electron microscopy (SEM) imaging saves researchers and operators valuable time. A lot of scanning electron microscope users use this for a wide range of purposes. This blog shows an example of how automated SEM imaging is used in the field: it details performing an automated Laser-Induced Damage Threshold test (LIDT).

Read more

Buying a scanning electron microscope: how to select the right SEM

By Karl Kersten - Aug 2, 2018

You want to buy a new scanning electron microscope (SEM) because you know you need more SEM capability. Maybe you have a traditional floor model SEM, but it is slow and complicated to operate. Maybe you are using an outside service and the turn-around time is unacceptably long.

You’ve made your case that your company could significantly improve their business performance and you could do your job better if SEM imaging and analysis were easier, faster and more accessible. Can a desktop SEM do what you need? This article provides the answers and helps you to select the right SEM.

You want to buy a new scanning electron microscope (SEM) because you know you need more SEM capability. Maybe you have a traditional floor model SEM, but it is slow and complicated to operate. Maybe you are using an outside service and the turn-around time is unacceptably long.

You’ve made your case that your company could significantly improve their business performance and you could do your job better if SEM imaging and analysis were easier, faster and more accessible. Can a desktop SEM do what you need? This article provides the answers and helps you to select the right SEM.

Read more

Sample degradation during SEM analysis: what causes it and how to slow down the process

By Karl Kersten - Jul 19, 2018

When using a scanning electron microscope (SEM), the electron beam can, over time, permanently alter or degrade the sample that is being observed. Sample degradation is an unwanted effect as it can alter — or even destroy — the details you want to see, and consequently change your results and conclusions. In this blog, I will explain what can cause sample degradation, and how you can slow down the process.

When using a scanning electron microscope (SEM), the electron beam can, over time, permanently alter or degrade the sample that is being observed. Sample degradation is an unwanted effect as it can alter — or even destroy — the details you want to see, and consequently change your results and conclusions. In this blog, I will explain what can cause sample degradation, and how you can slow down the process.

Read more

The Phenom Process Automation: mixing backscattered and secondary electron images using a Python script

By Karl Kersten - Jun 28, 2018

When the primary beam interacts with the sample, backscattered electrons (BSEs) and secondary electrons (SEs) are generated. Images of the samples obtained by detecting the emitted signals, carry information on the composition (for BSE signals) and on the topography (for SE signals). How are BSEs and SEs formed and why do they carry specific information? Moreover, is it possible to get both compositional and topographical information in one image? And how flexible is this solution? In this blog, I will answer these questions and introduce a script that allows users to mix their own images.

When the primary beam interacts with the sample, backscattered electrons (BSEs) and secondary electrons (SEs) are generated. Images of the samples obtained by detecting the emitted signals, carry information on the composition (for BSE signals) and on the topography (for SE signals). How are BSEs and SEs formed and why do they carry specific information? Moreover, is it possible to get both compositional and topographical information in one image? And how flexible is this solution? In this blog, I will answer these questions and introduce a script that allows users to mix their own images.

Read more

SEM working principle: the detection of backscattered electrons

By Karl Kersten - Jun 14, 2018

Backscattered electrons (BSEs) are high-energy electrons that are produced by the elastic scattering of the primary beam electrons with the atom nuclei. The yield of BSEs, that is the ratio of the number of emitted BSEs and the amount of primary beam electrons, depends on the atomic number: the higher the atomic number, or the heavier the element, the brighter the contrast. In the Phenom SEM, BSEs are detected using four-quadrant semiconductor detectors placed above the sample. In this blog, we will explain what a semiconductor detector is and how backscattered electrons are detected in a scanning electron microscope.

Backscattered electrons (BSEs) are high-energy electrons that are produced by the elastic scattering of the primary beam electrons with the atom nuclei. The yield of BSEs, that is the ratio of the number of emitted BSEs and the amount of primary beam electrons, depends on the atomic number: the higher the atomic number, or the heavier the element, the brighter the contrast. In the Phenom SEM, BSEs are detected using four-quadrant semiconductor detectors placed above the sample. In this blog, we will explain what a semiconductor detector is and how backscattered electrons are detected in a scanning electron microscope.

Read more

How a desktop SEM saves lab operators a lot of time

By Karl Kersten - Apr 6, 2018

Is it true that as a lab operator, you work under constant time pressure? Do you find it challenging to deliver output quickly? And does it take hard work to maintain your high standard of quality? This blogs explains how a desktop scanning electron microscope (SEM) can be used to increase your research productivity and therefore to save a lot of time.

Is it true that as a lab operator, you work under constant time pressure? Do you find it challenging to deliver output quickly? And does it take hard work to maintain your high standard of quality? This blogs explains how a desktop scanning electron microscope (SEM) can be used to increase your research productivity and therefore to save a lot of time.

Read more

Press Room | Privacy Policy | Terms of Use | Sitemap |