Karl Kersten

Karl Kersten is head of the Thermo Scientific Phenom Desktop SEM Application Team at Thermo Fisher Scientific. He is passionate about the Phenom Desktop SEM product and likes converting customer requirements into product or feature specifications so customers can achieve their goals.

Backscattered electron imaging explained

By Karl Kersten - October 4, 2018

 Backscattered electrons (BSEs) are generated by elastic scattering events. When the electrons in the primary beam travel close to the atom’s nuclei in the specimen, their trajectory is deviated due to the force they feel with the positive charges in the nuclei. Depending on the size of the atom nuclei, the number of backscattered electrons differs. This is the basic principle of BSE image contrast. In this blog we introduce the backscattering coefficient and explain how it is influenced by the inclination of the sample and the primary beam energy.

 Backscattered electrons (BSEs) are generated by elastic scattering events. When the electrons in the primary beam travel close to the atom’s nuclei in the specimen, their trajectory is deviated due to the force they feel with the positive charges in the nuclei. Depending on the size of the atom nuclei, the number of backscattered electrons differs. This is the basic principle of BSE image contrast. In this blog we introduce the backscattering coefficient and explain how it is influenced by the inclination of the sample and the primary beam energy.

Read more

How this engineering company supercharged their R&D process with SEM

By Karl Kersten - October 2, 2018

As device dimensions are shrinking, engineers and researchers are required to work on nanoscale levels. As a result, new technology is needed to create and evaluate structures during the R&D process. Luckily in turn, the physical size of this technology is getting smaller too. 

As device dimensions are shrinking, engineers and researchers are required to work on nanoscale levels. As a result, new technology is needed to create and evaluate structures during the R&D process. Luckily in turn, the physical size of this technology is getting smaller too. 

Read more

Backscattered electron images: how to improve their quality

By Karl Kersten - September 21, 2018

Backscatter electrons (BSEs) carry information on the material of the sample. Obtaining high-quality images with a backscattered electron detector depends on many factors, such as the conductivity of the sample, its morphology and composition, the type of BSE detector and the electronics. Given a fixed system with the same detector and electronics— and the same sample, we analyzed the factors that play a role in the quality of a BSE image. Beginning with the number of integrating frames and beam intensity, in this blog we will also discuss the roles of the working distance and the chamber pressure.

Backscatter electrons (BSEs) carry information on the material of the sample. Obtaining high-quality images with a backscattered electron detector depends on many factors, such as the conductivity of the sample, its morphology and composition, the type of BSE detector and the electronics. Given a fixed system with the same detector and electronics— and the same sample, we analyzed the factors that play a role in the quality of a BSE image. Beginning with the number of integrating frames and beam intensity, in this blog we will also discuss the roles of the working distance and the chamber pressure.

Read more

Tungsten vs. CeB6 electron source: Choosing the right desktop SEM

By Karl Kersten - September 13, 2018

Considering a desktop scanning electron microscope (SEM)? If so, then it is important to determine what type of electron source fits your needs, since it has a direct effect on the quality of your output. In this blog, we'll therefore describe compare a Tungsten electron source with a CeB6 electron source. Read on to learn to discover which electron source is most suitable for a desktop SEM.

Considering a desktop scanning electron microscope (SEM)? If so, then it is important to determine what type of electron source fits your needs, since it has a direct effect on the quality of your output. In this blog, we'll therefore describe compare a Tungsten electron source with a CeB6 electron source. Read on to learn to discover which electron source is most suitable for a desktop SEM.

Read more

STOP outsourcing your scanning electron microscopy research — get your own SEM!

By Karl Kersten - September 6, 2018

Are you a lab operator who wants to stop outsourcing your scanning electron microscopy jobs and buy your own Scanning Electron Microscope? Then you’ve probably already calculated that a personal SEM is a worthwhile capital investment. But the operational costs of SEM are just as important too: all the ongoing equipment expenses related to an SEM like the facilities, its maintenance, and operators.

Are you a lab operator who wants to stop outsourcing your scanning electron microscopy jobs and buy your own Scanning Electron Microscope? Then you’ve probably already calculated that a personal SEM is a worthwhile capital investment. But the operational costs of SEM are just as important too: all the ongoing equipment expenses related to an SEM like the facilities, its maintenance, and operators.

Read more

Electron lenses and aberrations: what affects the resolution in electron microscopes?

By Karl Kersten - August 30, 2018

Resolution is one of the most important parameters in a scanning electron microscope (SEM). The lower the resolution, the smaller the features that can be seen. The resolution, which is typically not defined (and therefore measured) in a unique way, depends on the size of the beam when focused on the sample.

Resolution is one of the most important parameters in a scanning electron microscope (SEM). The lower the resolution, the smaller the features that can be seen. The resolution, which is typically not defined (and therefore measured) in a unique way, depends on the size of the beam when focused on the sample.

Read more

Why SEM is the most suitable method for fiber analysis

By Karl Kersten - August 23, 2018

Fibers are all around us. Different types of fibers exist, but in most cases we do not notice them because they are used in a product. In case an object is much longer as it is wide we consider it a fiber. Fibers have specific properties for the product in which they are used. This blog will describe the different ways these fibers can be classified and how their performance can best be analysed. Hint: it has something to do with putting fibers under a specific type of microscope. You're about to discover the most suitable method for fiber analysis, so do read on!

Fibers are all around us. Different types of fibers exist, but in most cases we do not notice them because they are used in a product. In case an object is much longer as it is wide we consider it a fiber. Fibers have specific properties for the product in which they are used. This blog will describe the different ways these fibers can be classified and how their performance can best be analysed. Hint: it has something to do with putting fibers under a specific type of microscope. You're about to discover the most suitable method for fiber analysis, so do read on!

Read more

Automated scanning electron microscopy (SEM) imaging: how it's used

By Karl Kersten - August 16, 2018

In a previous blog, we described how automating scanning electron microscopy (SEM) imaging saves researchers and operators valuable time. A lot of scanning electron microscope users use this for a wide range of purposes. This blog shows an example of how automated SEM imaging is used in the field: it details performing an automated Laser-Induced Damage Threshold test (LIDT).

In a previous blog, we described how automating scanning electron microscopy (SEM) imaging saves researchers and operators valuable time. A lot of scanning electron microscope users use this for a wide range of purposes. This blog shows an example of how automated SEM imaging is used in the field: it details performing an automated Laser-Induced Damage Threshold test (LIDT).

Read more

Buying a scanning electron microscope: how to select the right SEM

By Karl Kersten - August 2, 2018

You want to buy a new scanning electron microscope (SEM) because you know you need more SEM capability. Maybe you have a traditional floor model SEM, but it is slow and complicated to operate. Maybe you are using an outside service and the turn-around time is unacceptably long.

You’ve made your case that your company could significantly improve their business performance and you could do your job better if SEM imaging and analysis were easier, faster and more accessible. Can a desktop SEM do what you need? This article provides the answers and helps you to select the right SEM.

You want to buy a new scanning electron microscope (SEM) because you know you need more SEM capability. Maybe you have a traditional floor model SEM, but it is slow and complicated to operate. Maybe you are using an outside service and the turn-around time is unacceptably long.

You’ve made your case that your company could significantly improve their business performance and you could do your job better if SEM imaging and analysis were easier, faster and more accessible. Can a desktop SEM do what you need? This article provides the answers and helps you to select the right SEM.

Read more

Sample degradation during SEM analysis: what causes it and how to slow down the process

By Karl Kersten - July 19, 2018

When using a scanning electron microscope (SEM), the electron beam can, over time, permanently alter or degrade the sample that is being observed. Sample degradation is an unwanted effect as it can alter — or even destroy — the details you want to see, and consequently change your results and conclusions. In this blog, I will explain what can cause sample degradation, and how you can slow down the process.

When using a scanning electron microscope (SEM), the electron beam can, over time, permanently alter or degrade the sample that is being observed. Sample degradation is an unwanted effect as it can alter — or even destroy — the details you want to see, and consequently change your results and conclusions. In this blog, I will explain what can cause sample degradation, and how you can slow down the process.

Read more

Press Room | Privacy Policy | Terms of Use | Sitemap |