Blog

70 Years of Electron Microscopy: The History of the Thermo Scientific Phenom Desktop Scanning Electron Microscope

By Rose Helweg - September 12, 2019

About 70 years ago, Philips built its first commercial electron microscope. This microscope made electron microscopy available to researchers worldwide. Now, 70 years later, electron microscopy plays a fundamental role in research done in various fields, ranging from materials science to life sciences. A big role in making electron microscopy accessible to everybody is played by the Phenom Desktop SEM, originally launched in 2006.

About 70 years ago, Philips built its first commercial electron microscope. This microscope made electron microscopy available to researchers worldwide. Now, 70 years later, electron microscopy plays a fundamental role in research done in various fields, ranging from materials science to life sciences. A big role in making electron microscopy accessible to everybody is played by the Phenom Desktop SEM, originally launched in 2006.

Read more

Scanning Electron Microscope Automation Guidelines for Small Script Development: Image Analysis

By Wouter Arts - September 5, 2019

Scripts are small automated software tools that can help a scanning electron microscope (SEM) user with their work. In my previous blog I wrote about how SEM images can be acquired with the Phenom Programming Interface (PPI) using a small script. In this blog I will explain how to extract physical properties from those SEM images.

Scripts are small automated software tools that can help a scanning electron microscope (SEM) user with their work. In my previous blog I wrote about how SEM images can be acquired with the Phenom Programming Interface (PPI) using a small script. In this blog I will explain how to extract physical properties from those SEM images.

Read more

SEM Technology: the Role of the Electron Beam Voltage in Electron Microscopy Analysis

By Luigi Raspolini - August 29, 2019

When conducting electron microscopy (EM) analysis, there are a few important parameters that must be taken into account to produce the best possible results, and to image the feature of interest. One of the crucial roles is played by the voltage (or tension) applied to the source electrodes to generate the electron beam. Historically, the trend has always been to increase the voltage to improve the resolution of the system.

It is only in recent years that scanning electron microscope (SEM) producers have started to focus on improving the resolution at lower voltages. A major role in this has been the expanding field of application of EM to the life sciences - especially after the introduction of the Nobel prize-winning cryo-SEM technique. This blog will focus on the effects of the voltage on the results of electron microscopy analysis.

When conducting electron microscopy (EM) analysis, there are a few important parameters that must be taken into account to produce the best possible results, and to image the feature of interest. One of the crucial roles is played by the voltage (or tension) applied to the source electrodes to generate the electron beam. Historically, the trend has always been to increase the voltage to improve the resolution of the system.

It is only in recent years that scanning electron microscope (SEM) producers have started to focus on improving the resolution at lower voltages. A major role in this has been the expanding field of application of EM to the life sciences - especially after the introduction of the Nobel prize-winning cryo-SEM technique. This blog will focus on the effects of the voltage on the results of electron microscopy analysis.

Read more

EDX Analysis with a Scanning Electron Microscope (SEM): How Does it Work?

By Antonis Nanakoudis - August 22, 2019

Scanning electron microscopes (SEMs) employ electron beams in order to get information from a sample at the nanoscale. The main type of signals that are detected are the backscattered (BSE) and secondary electrons (SE), which generate a grayscale image of the sample at very high magnifications. However, there are many other signals which can be a product of the electron-matter interaction, and these can provide additional information about the sample. In this blog we will describe how energy-dispersive X-ray (EDX or EDS) analysis works on a SEM.

Scanning electron microscopes (SEMs) employ electron beams in order to get information from a sample at the nanoscale. The main type of signals that are detected are the backscattered (BSE) and secondary electrons (SE), which generate a grayscale image of the sample at very high magnifications. However, there are many other signals which can be a product of the electron-matter interaction, and these can provide additional information about the sample. In this blog we will describe how energy-dispersive X-ray (EDX or EDS) analysis works on a SEM.

Read more

What is SEM? Scanning electron microscope technology explained

By Antonis Nanakoudis - August 15, 2019

Scanning electron microscopy (SEM) has become a powerful and versatile tool for material characterization. This is especially so in recent years, due to the continuous shrinking of the dimension of materials used in various applications. In this blog, we provide an answer to the question "what is SEM?" and describe the main working principles of a SEM instrument.

Scanning electron microscopy (SEM) has become a powerful and versatile tool for material characterization. This is especially so in recent years, due to the continuous shrinking of the dimension of materials used in various applications. In this blog, we provide an answer to the question "what is SEM?" and describe the main working principles of a SEM instrument.

Read more

Battery research with a Scanning Electron Microscope: inspecting one layer at a time

By Luigi Raspolini - August 8, 2019

Batteries revolutionized the world of electronics by enabling us to carry an energy reserve in our pockets. Miniaturization and efficiency are the two key words when it comes to new developments in this field, impacting with the battery materials’ properties and stretching their limits. Let’s take a look at how researchers characterize materials and gather relevant information about batteries using scanning electron microscopy (SEM).

Batteries revolutionized the world of electronics by enabling us to carry an energy reserve in our pockets. Miniaturization and efficiency are the two key words when it comes to new developments in this field, impacting with the battery materials’ properties and stretching their limits. Let’s take a look at how researchers characterize materials and gather relevant information about batteries using scanning electron microscopy (SEM).

Read more

Effective asbestos analysis with a Scanning Electron Microscope (SEM)

By Luigi Raspolini - August 1, 2019

Resistance to fire, sound absorption, tensile strength and low price caused a boost in asbestos mining activities at the beginning of 19th century.

Already used in the production of asphalt, brake pads, electrical insulators, fireproof suits, technical fabrics and other everyday products, asbestos started its golden century when the Austrian engineer Ludwig Hatschek invented the first asbestos-cement, often mistakenly referred to as Eternit.

The material properties, particularly its lightness and resilience, started a real revolution in the construction engineering and asbestos-cements factories, which immediately emerged all over the world.

Resistance to fire, sound absorption, tensile strength and low price caused a boost in asbestos mining activities at the beginning of 19th century.

Already used in the production of asphalt, brake pads, electrical insulators, fireproof suits, technical fabrics and other everyday products, asbestos started its golden century when the Austrian engineer Ludwig Hatschek invented the first asbestos-cement, often mistakenly referred to as Eternit.

The material properties, particularly its lightness and resilience, started a real revolution in the construction engineering and asbestos-cements factories, which immediately emerged all over the world.

Read more

What is depth of field and how can I optimize it in a scanning electron microscope?

By Luigi Raspolini - July 25, 2019

Imaging with a scanning electron microscope (SEM) consists of taking pictures of small features. So why not consider a comparison with photography? Let’s analyze how similar the behaviors of a SEM and a camera are when it comes to focusing on your subject, and what the exact definition of depth of field is.

Imaging with a scanning electron microscope (SEM) consists of taking pictures of small features. So why not consider a comparison with photography? Let’s analyze how similar the behaviors of a SEM and a camera are when it comes to focusing on your subject, and what the exact definition of depth of field is.

Read more

How SEM helps to detect additive manufacturing defects in a 3D-printed object

By Antonis Nanakoudis - July 18, 2019

In a previous blog, we introduced Additive Manufacturing (AM) as a new manufacturing approach and described its key points (you can read the blog here). Additive Manufacturing, also known as 3D printing or rapid prototyping, has attracted the attention of many people and industries around the world due to its unlimited and promising potential. In this blog we will describe how the use of a Scanning Electron Microscope (SEM) can be a powerful tool to monitor and improve the quality of the additive manufacturingprocesses.

In a previous blog, we introduced Additive Manufacturing (AM) as a new manufacturing approach and described its key points (you can read the blog here). Additive Manufacturing, also known as 3D printing or rapid prototyping, has attracted the attention of many people and industries around the world due to its unlimited and promising potential. In this blog we will describe how the use of a Scanning Electron Microscope (SEM) can be a powerful tool to monitor and improve the quality of the additive manufacturingprocesses.

Read more

How SEM helps research polymers characteristics, properties, and uses

By Luigi Raspolini - July 11, 2019

Polymers have many uses and applications: engineered combinations of monomers produce a nearly infinite number of molecules with different properties, which are determined by the chemical composition and structure of the molecule. The form of the molecule has a big influence on how the polymer will behave when exposed to different external forces. In this blog, you’ll find practical examples of how Scanning Electron Microscopes (SEMs) can provide unexpected results.

Polymers have many uses and applications: engineered combinations of monomers produce a nearly infinite number of molecules with different properties, which are determined by the chemical composition and structure of the molecule. The form of the molecule has a big influence on how the polymer will behave when exposed to different external forces. In this blog, you’ll find practical examples of how Scanning Electron Microscopes (SEMs) can provide unexpected results.

Read more

Press Room | Privacy Policy | Terms of Use | Sitemap |