Topic: XRAY-ANALYSIS

How EDX analysis with a scanning electron microscope (SEM) works

By Antonis Nanakoudis - Sep 7, 2017

Scanning electron microscopes (SEMs) employ electron beams in order to get information from a sample at the nanoscale. The main type of signals that are detected are the backscattered (BSE) and secondary electrons (SE), which generate a grayscale image of the sample at very high magnifications. However, there are many other signals which can be a product of the electron-matter interaction — these can provide additional information about the sample. In this blog we will describe how energy — dispersive — X-ray (EDX or EDS) analysis works on a SEM.

Scanning electron microscopes (SEMs) employ electron beams in order to get information from a sample at the nanoscale. The main type of signals that are detected are the backscattered (BSE) and secondary electrons (SE), which generate a grayscale image of the sample at very high magnifications. However, there are many other signals which can be a product of the electron-matter interaction — these can provide additional information about the sample. In this blog we will describe how energy — dispersive — X-ray (EDX or EDS) analysis works on a SEM.

Read more
Topics: xray analysis, EDX

How next-generation composite materials are created and analysed

By Luigi Raspolini - Jul 6, 2017

The technical specifications of next-generation materials are taking our technology to a completely new level, allowing us to create products with outstanding properties that were impossible to achieve in the past. These materials are the result of a huge drive toward innovation in material science and could only be achieved because of the invention of the first composite materials and their introduction into the industrial landscape.

In this article, I describe how these next-generation materials are being developed — and equally important: how their chemical composition is analysed, and their performance is measured.

The technical specifications of next-generation materials are taking our technology to a completely new level, allowing us to create products with outstanding properties that were impossible to achieve in the past. These materials are the result of a huge drive toward innovation in material science and could only be achieved because of the invention of the first composite materials and their introduction into the industrial landscape.

In this article, I describe how these next-generation materials are being developed — and equally important: how their chemical composition is analysed, and their performance is measured.

Read more

How SEM helps discover suitable corrosion inhibitors

By Dr. Jasmin Zahn - Jun 12, 2017

Many industries would benefit from the inhibition of corrosion in metals. In the materials science field, scientists are therefore exploring ways to prevent or reduce corrosion. Many studies looking for suitable corrosion inhibitors have been carried out.

However, most of the inhibitors discovered and developed during those studies were synthetic chemicals, which are very expensive, and hazardous to the environment. Due to the characteristics of these chemicals, studies were carried out to investigate and analyze natural products that could be used as an anti-corrosion agent. SEM technology helped conduct these studies in an effective manner, something we will describe further in this article.

Many industries would benefit from the inhibition of corrosion in metals. In the materials science field, scientists are therefore exploring ways to prevent or reduce corrosion. Many studies looking for suitable corrosion inhibitors have been carried out.

However, most of the inhibitors discovered and developed during those studies were synthetic chemicals, which are very expensive, and hazardous to the environment. Due to the characteristics of these chemicals, studies were carried out to investigate and analyze natural products that could be used as an anti-corrosion agent. SEM technology helped conduct these studies in an effective manner, something we will describe further in this article.

Read more

What is SEM? SEM technology explained

By Antonis Nanakoudis - Jun 1, 2017

Scanning electron microscopy (SEM) has become a powerful and versatile tool for material characterization. This is especially so in recent years, due to the continuous shrinking of the dimension of materials used in various applications. In this blog, we describe the main working principles of a SEM instrument.

Scanning electron microscopy (SEM) has become a powerful and versatile tool for material characterization. This is especially so in recent years, due to the continuous shrinking of the dimension of materials used in various applications. In this blog, we describe the main working principles of a SEM instrument.

Read more

X-ray analysis on the spot? Use desktop SEM with EDS

By Jeroen Smulders - Aug 4, 2016

You probably want to use Energy Dispersive X-­Ray Spectroscopy — or X-­ray/EDS analysis — to determine the elemental composition of a sample. Is it hard for you to get your analysis done proper and fast? And is it even harder to gather quantitative compositional information of your sample quickly?

You probably want to use Energy Dispersive X-­Ray Spectroscopy — or X-­ray/EDS analysis — to determine the elemental composition of a sample. Is it hard for you to get your analysis done proper and fast? And is it even harder to gather quantitative compositional information of your sample quickly?

Read more

Press Room | Privacy Policy | Disclaimer | Sitemap