Topic: sample-degradation

Sputter coating for SEM: how this sample preparation technique assists your imaging

By Antonis Nanakoudis - Aug 9, 2018

Scanning electron microscopes (SEMs) are very versatile tools that can provide information at the nanoscale of many different samples - with little or no sample preparation. In some cases though, sputter coating the samples prior to working with SEMs is recommended, or even necessary, in order to get a good SEM image. In this blog, we will explain how the sputter coating process works, and to which type of samples it should be applied.

Scanning electron microscopes (SEMs) are very versatile tools that can provide information at the nanoscale of many different samples - with little or no sample preparation. In some cases though, sputter coating the samples prior to working with SEMs is recommended, or even necessary, in order to get a good SEM image. In this blog, we will explain how the sputter coating process works, and to which type of samples it should be applied.

Read more

Sample degradation during SEM analysis: what causes it and how to slow down the process

By Karl Kersten - Jul 19, 2018

When using a scanning electron microscope (SEM), the electron beam can, over time, permanently alter or degrade the sample that is being observed. Sample degradation is an unwanted effect as it can alter — or even destroy — the details you want to see, and consequently change your results and conclusions. In this blog, I will explain what can cause sample degradation, and how you can slow down the process.

When using a scanning electron microscope (SEM), the electron beam can, over time, permanently alter or degrade the sample that is being observed. Sample degradation is an unwanted effect as it can alter — or even destroy — the details you want to see, and consequently change your results and conclusions. In this blog, I will explain what can cause sample degradation, and how you can slow down the process.

Read more

How-to: high-quality fiber analysis through proper SEM sample preparation

By Marijke Scotuzzi - Jan 18, 2018

Fibers are generally imaged in a scanning electron microscope (SEM), which provides high-resolution images, elemental analysis, and the possibility of automatically measuring thousands of fibers in mere minutes. But in some cases, imaging fibers with a SEM also presents challenges as the nature of some fibers might compromise the quality of your analysis. With this in mind, this blog describes how you can obtain high-quality imaging and fiber analysis through proper SEM configuration and sample preparation.

Fibers are generally imaged in a scanning electron microscope (SEM), which provides high-resolution images, elemental analysis, and the possibility of automatically measuring thousands of fibers in mere minutes. But in some cases, imaging fibers with a SEM also presents challenges as the nature of some fibers might compromise the quality of your analysis. With this in mind, this blog describes how you can obtain high-quality imaging and fiber analysis through proper SEM configuration and sample preparation.

Read more

How to prevent oxidative damage to a scanning electron microscope sample

By Luigi Raspolini - Dec 7, 2017

O2 is an extremely reactive gas, and some materials don’t get along well with it. Oxidation processes are activated as soon as certain samples are exposed to the atmosphere and this affects the structure and characteristics of the samples — in most cases permanently. This blog explains how such effects can be prevented and how SEM analysis can be performed on oxygen-sensitive samples without compromising the structure of the sample itself.

O2 is an extremely reactive gas, and some materials don’t get along well with it. Oxidation processes are activated as soon as certain samples are exposed to the atmosphere and this affects the structure and characteristics of the samples — in most cases permanently. This blog explains how such effects can be prevented and how SEM analysis can be performed on oxygen-sensitive samples without compromising the structure of the sample itself.

Read more

Sample preparation techniques for SEM to neutralize the effect of vacuum

By Luigi Raspolini - Aug 24, 2017

Scanning electron microscopes (SEM) scan the surface of the sample with an electron beam, collecting reflected electrons which carry information about the material the electrons interact with. If gas is in the sample chamber, its atoms interact with the beam, partly deflecting electrons and adding noise to the image. 

This is the reason why vacuum must be achieved in SEM before imaging. But while vacuum is crucial for proper analysis, it can also have a negative effect on certain types of materials. Read this blog to learn how you can neutralize vacuum and keep your samples intact.

Scanning electron microscopes (SEM) scan the surface of the sample with an electron beam, collecting reflected electrons which carry information about the material the electrons interact with. If gas is in the sample chamber, its atoms interact with the beam, partly deflecting electrons and adding noise to the image. 

This is the reason why vacuum must be achieved in SEM before imaging. But while vacuum is crucial for proper analysis, it can also have a negative effect on certain types of materials. Read this blog to learn how you can neutralize vacuum and keep your samples intact.

Read more

How SEM helps understand the behavior of nanowire-based gas sensors

By Marijke Scotuzzi - Jul 13, 2017

Nanowires are widely used in electronic applications. They are typically used for transistors, where they bring benefits in terms of efficiency due to their high aspect ratio that enables good control of the channel potential. Nanowires are also being widely studied when used as sensors for proteins and chemicals. Researchers are exploring new and more efficient nanowire-based gas sensors by improving and developing new fabrication methods. In this blog, we discuss how microscopy helps to characterize nanowires and understanding their gas-sensing behavior. 

Nanowires are widely used in electronic applications. They are typically used for transistors, where they bring benefits in terms of efficiency due to their high aspect ratio that enables good control of the channel potential. Nanowires are also being widely studied when used as sensors for proteins and chemicals. Researchers are exploring new and more efficient nanowire-based gas sensors by improving and developing new fabrication methods. In this blog, we discuss how microscopy helps to characterize nanowires and understanding their gas-sensing behavior. 

Read more

Imaging fibers with a SEM: how to obtain a flawless quality analysis

By Marijke Scotuzzi - Jun 22, 2017

In our daily life, we make use of a large amount of objects and devices that are produced from fibers. Fibers are usually imaged in a scanning electron microscope (SEM), which provides high-resolution images, elemental analysis, and the possibility of automatically measuring thousands of fibers in mere minutes. But in some cases, imaging fibers with a SEM also presents challenges, as the nature of some fibers might compromise the quality of your analysis. With this in mind, this blog describes how you can obtain a high analysis quality through proper SEM configuration and sample preparation. 

In our daily life, we make use of a large amount of objects and devices that are produced from fibers. Fibers are usually imaged in a scanning electron microscope (SEM), which provides high-resolution images, elemental analysis, and the possibility of automatically measuring thousands of fibers in mere minutes. But in some cases, imaging fibers with a SEM also presents challenges, as the nature of some fibers might compromise the quality of your analysis. With this in mind, this blog describes how you can obtain a high analysis quality through proper SEM configuration and sample preparation. 

Read more

Press Room | Privacy Policy | Terms of Use | Sitemap