Topic: fibers-imaging-analysis

Why SEM is the most suitable method for fiber analysis

By Karl Kersten - Aug 23, 2018

Fibers are all around us. Different types of fibers exist, but in most cases we do not notice them because they are used in a product. In case an object is much longer as it is wide we consider it a fiber. Fibers have specific properties for the product in which they are used. This blog will describe the different ways these fibers can be classified and how their performance can best be analysed. Hint: it has something to do with putting fibers under a specific type of microscope. You're about to discover the most suitable method for fiber analysis, so do read on!

Fibers are all around us. Different types of fibers exist, but in most cases we do not notice them because they are used in a product. In case an object is much longer as it is wide we consider it a fiber. Fibers have specific properties for the product in which they are used. This blog will describe the different ways these fibers can be classified and how their performance can best be analysed. Hint: it has something to do with putting fibers under a specific type of microscope. You're about to discover the most suitable method for fiber analysis, so do read on!

Read more

SEM analysis of PVDF-HFP nanofibers for the fabrication of energy harvesters

By Marijke Scotuzzi - Mar 8, 2018

Nowadays, energy harvesting is seeing an increasing interest from the research community, a fact that is confirmed by the rising number of publications. Energy harvesting has a wide range of applications, ranging from portable electronics, such as wristbands, to implanted medical devices like pacemakers. In this field, researchers are focusing their attention on the development of new energy harvesters that satisfy strict requirements: they need to be light and small, but also cheap and highly portable. In this blog, we discuss the fabrication of energy harvesters made from PVDF-HFP nanofibers on PDMS and SF substrates. We investigate how these energy harvesters are characterized and what the role of SEM is in this study.

Nowadays, energy harvesting is seeing an increasing interest from the research community, a fact that is confirmed by the rising number of publications. Energy harvesting has a wide range of applications, ranging from portable electronics, such as wristbands, to implanted medical devices like pacemakers. In this field, researchers are focusing their attention on the development of new energy harvesters that satisfy strict requirements: they need to be light and small, but also cheap and highly portable. In this blog, we discuss the fabrication of energy harvesters made from PVDF-HFP nanofibers on PDMS and SF substrates. We investigate how these energy harvesters are characterized and what the role of SEM is in this study.

Read more

SEM and fiber analysis for filtration systems quality control

By Luigi Raspolini - Feb 16, 2018

The production of filters and membranes undergoes several quality control steps to ensure that the properties of the product are up to specification. Different tools can be used for such analysis, but only one can provide the best results. Find out in this blog how Scanning Electron Microscopes (SEM) can be used to investigate imperfections in metallic filters.

The production of filters and membranes undergoes several quality control steps to ensure that the properties of the product are up to specification. Different tools can be used for such analysis, but only one can provide the best results. Find out in this blog how Scanning Electron Microscopes (SEM) can be used to investigate imperfections in metallic filters.

Read more

How-to: high-quality fiber analysis through proper SEM sample preparation

By Marijke Scotuzzi - Jan 18, 2018

Fibers are generally imaged in a scanning electron microscope (SEM), which provides high-resolution images, elemental analysis, and the possibility of automatically measuring thousands of fibers in mere minutes. But in some cases, imaging fibers with a SEM also presents challenges as the nature of some fibers might compromise the quality of your analysis. With this in mind, this blog describes how you can obtain high-quality imaging and fiber analysis through proper SEM configuration and sample preparation.

Fibers are generally imaged in a scanning electron microscope (SEM), which provides high-resolution images, elemental analysis, and the possibility of automatically measuring thousands of fibers in mere minutes. But in some cases, imaging fibers with a SEM also presents challenges as the nature of some fibers might compromise the quality of your analysis. With this in mind, this blog describes how you can obtain high-quality imaging and fiber analysis through proper SEM configuration and sample preparation.

Read more

How SEM analysis helps understanding new nanofiber applications

By Dr. Jasmin Zahn - Oct 26, 2017

How to transfer drugs into human bodies efficient and while doing that minimizing side effects, has been studied intensively, and many different techniques have been developed over the past few years. Electrospun nanofibers are one of such new systems that have attracted a lot of attention recently. This is thanks to the exceptional properties of these fibers: they have highly porous three-dimensional surfaces, a high surface-to-volume ratio, and interconnected porosity with tunable pore dimensions. Scanning electron microscopy (SEM) proved to be helpful as an analytical tool to understand how fiber properties can be altered and enhanced.

 

How to transfer drugs into human bodies efficient and while doing that minimizing side effects, has been studied intensively, and many different techniques have been developed over the past few years. Electrospun nanofibers are one of such new systems that have attracted a lot of attention recently. This is thanks to the exceptional properties of these fibers: they have highly porous three-dimensional surfaces, a high surface-to-volume ratio, and interconnected porosity with tunable pore dimensions. Scanning electron microscopy (SEM) proved to be helpful as an analytical tool to understand how fiber properties can be altered and enhanced.

 

Read more

Why hi-tech textile engineering requires SEM analysis

By Luigi Raspolini - Sep 28, 2017

It’s been a long time since the textile industry relied exclusively on natural fibers. Over the decades, synthetic fibers have proven to be cheaper, easier to produce and often perform better. At the same time, chemical treatments have been developed that improve the smoothness and the resistance of both natural and synthetic fibers, which has resulted in higher quality products. Read this blog for more information on how electron microscopy can play a fundamental role in this development process.

It’s been a long time since the textile industry relied exclusively on natural fibers. Over the decades, synthetic fibers have proven to be cheaper, easier to produce and often perform better. At the same time, chemical treatments have been developed that improve the smoothness and the resistance of both natural and synthetic fibers, which has resulted in higher quality products. Read this blog for more information on how electron microscopy can play a fundamental role in this development process.

Read more

How SEM revealed a solution to enhance hemp fibers for better properties

By Dr. Jasmin Zahn - Jul 26, 2017

Industrial hemp is one of the fastest growing plants and was one of the first plants used for the production of fibers about 10,000 years ago. Hemp fiber has been used extensively throughout history, with production climaxing soon after it was introduced to the New World. Read this blog to discover how hemp fibers can be used even more extensively because of better fiber properties, and how SEM helped reveal the solution that realizes these improvements. 

Industrial hemp is one of the fastest growing plants and was one of the first plants used for the production of fibers about 10,000 years ago. Hemp fiber has been used extensively throughout history, with production climaxing soon after it was introduced to the New World. Read this blog to discover how hemp fibers can be used even more extensively because of better fiber properties, and how SEM helped reveal the solution that realizes these improvements. 

Read more

How next-generation composite materials are created and analysed

By Luigi Raspolini - Jul 6, 2017

The technical specifications of next-generation materials are taking our technology to a completely new level, allowing us to create products with outstanding properties that were impossible to achieve in the past. These materials are the result of a huge drive toward innovation in material science and could only be achieved because of the invention of the first composite materials and their introduction into the industrial landscape.

In this article, I describe how these next-generation materials are being developed — and equally important: how their chemical composition is analysed, and their performance is measured.

The technical specifications of next-generation materials are taking our technology to a completely new level, allowing us to create products with outstanding properties that were impossible to achieve in the past. These materials are the result of a huge drive toward innovation in material science and could only be achieved because of the invention of the first composite materials and their introduction into the industrial landscape.

In this article, I describe how these next-generation materials are being developed — and equally important: how their chemical composition is analysed, and their performance is measured.

Read more

Imaging fibers with a SEM: how to obtain a flawless quality analysis

By Marijke Scotuzzi - Jun 22, 2017

In our daily life, we make use of a large amount of objects and devices that are produced from fibers. Fibers are usually imaged in a scanning electron microscope (SEM), which provides high-resolution images, elemental analysis, and the possibility of automatically measuring thousands of fibers in mere minutes. But in some cases, imaging fibers with a SEM also presents challenges, as the nature of some fibers might compromise the quality of your analysis. With this in mind, this blog describes how you can obtain a high analysis quality through proper SEM configuration and sample preparation. 

In our daily life, we make use of a large amount of objects and devices that are produced from fibers. Fibers are usually imaged in a scanning electron microscope (SEM), which provides high-resolution images, elemental analysis, and the possibility of automatically measuring thousands of fibers in mere minutes. But in some cases, imaging fibers with a SEM also presents challenges, as the nature of some fibers might compromise the quality of your analysis. With this in mind, this blog describes how you can obtain a high analysis quality through proper SEM configuration and sample preparation. 

Read more

How knowledge of fiber properties led to the fabrication of a heart valve

By Dr. Jasmin Zahn - Apr 13, 2017

These days, fibers and fiber materials can be found in endless applications. A wide range of these materials is used everywhere from baby diapers to water filters, from applications in asbestos to the automotive industry. Because of their widespread use, a lot of research is carried out to alter fiber materials and enhance their properties. This includes research on components as well as on fiber preparation technologies. One example is the fabrication of a heart valve using differently engineered fibers, which is described in this blog in more detail.

These days, fibers and fiber materials can be found in endless applications. A wide range of these materials is used everywhere from baby diapers to water filters, from applications in asbestos to the automotive industry. Because of their widespread use, a lot of research is carried out to alter fiber materials and enhance their properties. This includes research on components as well as on fiber preparation technologies. One example is the fabrication of a heart valve using differently engineered fibers, which is described in this blog in more detail.

Read more

Press Room | Privacy Policy | Terms of Use | Sitemap