Marijke Scotuzzi

Marijke Scotuzzi is an Application Engineer at Thermo Fisher Scientific, the world leader in serving science. Marijke has a keen interest in microscopy and is driven by the performance and the versatility of the Phenom desktop SEM. She is dedicated to developing new applications and to improving the system capabilities, with the main focus on imaging techniques.

Backscattered electron images: how to improve their quality

By Marijke Scotuzzi - Sep 21, 2018

Backscatter electrons (BSEs) carry information on the material of the sample. Obtaining high-quality images with a backscattered electron detector depends on many factors, such as the conductivity of the sample, its morphology and composition, the type of BSE detector and the electronics. Given a fixed system with the same detector and electronics— and the same sample, we analyzed the factors that play a role in the quality of a BSE image. Beginning with the number of integrating frames and beam intensity, in this blog we will also discuss the roles of the working distance and the chamber pressure.

Backscatter electrons (BSEs) carry information on the material of the sample. Obtaining high-quality images with a backscattered electron detector depends on many factors, such as the conductivity of the sample, its morphology and composition, the type of BSE detector and the electronics. Given a fixed system with the same detector and electronics— and the same sample, we analyzed the factors that play a role in the quality of a BSE image. Beginning with the number of integrating frames and beam intensity, in this blog we will also discuss the roles of the working distance and the chamber pressure.

Read more

Electron lenses and aberrations: what affects the resolution in electron microscopes?

By Marijke Scotuzzi - Aug 30, 2018

Resolution is one of the most important parameters in a scanning electron microscope (SEM). The lower the resolution, the smaller the features that can be seen. The resolution, which is typically not defined (and therefore measured) in a unique way, depends on the size of the beam when focused on the sample.

Resolution is one of the most important parameters in a scanning electron microscope (SEM). The lower the resolution, the smaller the features that can be seen. The resolution, which is typically not defined (and therefore measured) in a unique way, depends on the size of the beam when focused on the sample.

Read more

The Phenom Process Automation: mixing backscattered and secondary electron images using a Python script

By Marijke Scotuzzi - Jun 28, 2018

When the primary beam interacts with the sample, backscattered electrons (BSEs) and secondary electrons (SEs) are generated. Images of the samples obtained by detecting the emitted signals, carry information on the composition (for BSE signals) and on the topography (for SE signals). How are BSEs and SEs formed and why do they carry specific information? Moreover, is it possible to get both compositional and topographical information in one image? And how flexible is this solution? In this blog, I will answer these questions and introduce a script that allows users to mix their own images.

When the primary beam interacts with the sample, backscattered electrons (BSEs) and secondary electrons (SEs) are generated. Images of the samples obtained by detecting the emitted signals, carry information on the composition (for BSE signals) and on the topography (for SE signals). How are BSEs and SEs formed and why do they carry specific information? Moreover, is it possible to get both compositional and topographical information in one image? And how flexible is this solution? In this blog, I will answer these questions and introduce a script that allows users to mix their own images.

Read more

SEM working principle: the detection of backscattered electrons

By Marijke Scotuzzi - Jun 14, 2018

Backscattered electrons (BSEs) are high-energy electrons that are produced by the elastic scattering of the primary beam electrons with the atom nuclei. The yield of BSEs, that is the ratio of the number of emitted BSEs and the amount of primary beam electrons, depends on the atomic number: the higher the atomic number, or the heavier the element, the brighter the contrast. In the Phenom SEM, BSEs are detected using four-quadrant semiconductor detectors placed above the sample. In this blog, we will explain what a semiconductor detector is and how backscattered electrons are detected in a scanning electron microscope.

Backscattered electrons (BSEs) are high-energy electrons that are produced by the elastic scattering of the primary beam electrons with the atom nuclei. The yield of BSEs, that is the ratio of the number of emitted BSEs and the amount of primary beam electrons, depends on the atomic number: the higher the atomic number, or the heavier the element, the brighter the contrast. In the Phenom SEM, BSEs are detected using four-quadrant semiconductor detectors placed above the sample. In this blog, we will explain what a semiconductor detector is and how backscattered electrons are detected in a scanning electron microscope.

Read more

How SEM helps perform automated quality control on phosphate coatings

By Marijke Scotuzzi - Mar 16, 2018

We are surrounded by products that, for either decorative or functional purposes, are covered with coatings; from paintings and lacquers, to adhesive or protective coatings, optical, catalytic or insulating coatings. Of all these coatings, conversion phosphate coatings play an important role, especially in the automotive industry: they are used for corrosion resistance and lubricity. Since these coatings are used for critical parts, the coating process must undergo thorough quality checks. These checks consist of the analysis of the morphology of the coating as well as the percentage of coverage. In this blog, we describe and analyze how automated tools combined with SEMs can be helpful in quality checking phosphate coatings.

We are surrounded by products that, for either decorative or functional purposes, are covered with coatings; from paintings and lacquers, to adhesive or protective coatings, optical, catalytic or insulating coatings. Of all these coatings, conversion phosphate coatings play an important role, especially in the automotive industry: they are used for corrosion resistance and lubricity. Since these coatings are used for critical parts, the coating process must undergo thorough quality checks. These checks consist of the analysis of the morphology of the coating as well as the percentage of coverage. In this blog, we describe and analyze how automated tools combined with SEMs can be helpful in quality checking phosphate coatings.

Read more

SEM analysis of PVDF-HFP nanofibers for the fabrication of energy harvesters

By Marijke Scotuzzi - Mar 8, 2018

Nowadays, energy harvesting is seeing an increasing interest from the research community, a fact that is confirmed by the rising number of publications. Energy harvesting has a wide range of applications, ranging from portable electronics, such as wristbands, to implanted medical devices like pacemakers. In this field, researchers are focusing their attention on the development of new energy harvesters that satisfy strict requirements: they need to be light and small, but also cheap and highly portable. In this blog, we discuss the fabrication of energy harvesters made from PVDF-HFP nanofibers on PDMS and SF substrates. We investigate how these energy harvesters are characterized and what the role of SEM is in this study.

Nowadays, energy harvesting is seeing an increasing interest from the research community, a fact that is confirmed by the rising number of publications. Energy harvesting has a wide range of applications, ranging from portable electronics, such as wristbands, to implanted medical devices like pacemakers. In this field, researchers are focusing their attention on the development of new energy harvesters that satisfy strict requirements: they need to be light and small, but also cheap and highly portable. In this blog, we discuss the fabrication of energy harvesters made from PVDF-HFP nanofibers on PDMS and SF substrates. We investigate how these energy harvesters are characterized and what the role of SEM is in this study.

Read more

Emission stability in SEM thermionic electron sources: CeB6, LaB6 and W filaments

By Marijke Scotuzzi - Feb 1, 2018

Typically, desktop scanning electron microscopes (SEM) make use of thermionic sources, from which electrons are emitted when warming up the SEM filament. Although the working principles are the same, different thermionic sources show a different performance. Phenom SEMs are equipped with a CeB6 source because of its higher brightness and longer lifetime. A parameter that plays a crucial role is the emission current stability. How is the CeB6 source performing in terms of stability? What are the engineering smarts that enable the Phenom source to maximize a CeB6 source's potential? This blog answers these questions.

Typically, desktop scanning electron microscopes (SEM) make use of thermionic sources, from which electrons are emitted when warming up the SEM filament. Although the working principles are the same, different thermionic sources show a different performance. Phenom SEMs are equipped with a CeB6 source because of its higher brightness and longer lifetime. A parameter that plays a crucial role is the emission current stability. How is the CeB6 source performing in terms of stability? What are the engineering smarts that enable the Phenom source to maximize a CeB6 source's potential? This blog answers these questions.

Read more

How-to: high-quality fiber analysis through proper SEM sample preparation

By Marijke Scotuzzi - Jan 18, 2018

Fibers are generally imaged in a scanning electron microscope (SEM), which provides high-resolution images, elemental analysis, and the possibility of automatically measuring thousands of fibers in mere minutes. But in some cases, imaging fibers with a SEM also presents challenges as the nature of some fibers might compromise the quality of your analysis. With this in mind, this blog describes how you can obtain high-quality imaging and fiber analysis through proper SEM configuration and sample preparation.

Fibers are generally imaged in a scanning electron microscope (SEM), which provides high-resolution images, elemental analysis, and the possibility of automatically measuring thousands of fibers in mere minutes. But in some cases, imaging fibers with a SEM also presents challenges as the nature of some fibers might compromise the quality of your analysis. With this in mind, this blog describes how you can obtain high-quality imaging and fiber analysis through proper SEM configuration and sample preparation.

Read more

Inside a scanning electron microscope: the SEM electron column explained

By Marijke Scotuzzi - Dec 21, 2017

Scanning electron microscopes (SEMs) use an electron beam to image samples with a resolution down to the nanometer scale. The electrons are emitted from a filament and collimated into a beam in the electron source. The beam is then focused on the sample surface by a set of lenses in the electron column. How does an electron lens work? And which kind of lenses exist? How are lenses combined to form an electron column? In this blog, we will answer these questions and give a general insight into the working principle of an electron column.

Scanning electron microscopes (SEMs) use an electron beam to image samples with a resolution down to the nanometer scale. The electrons are emitted from a filament and collimated into a beam in the electron source. The beam is then focused on the sample surface by a set of lenses in the electron column. How does an electron lens work? And which kind of lenses exist? How are lenses combined to form an electron column? In this blog, we will answer these questions and give a general insight into the working principle of an electron column.

Read more

Fabrication of photonic devices through direct laser writing: how SEM contributes

By Marijke Scotuzzi - Oct 19, 2017

Photonic devices are widely used in the physical sciences for creating, manipulating and detecting light. In the future, the challenge will be to fabricate advanced photonic devices, which will require flexibility and tunability. Fabricating these devices is not easy, as they require an advanced three-dimensional lithographic technique. Direct laser writing (DLW) is an interesting approach that aims to achieve this using a liquid crystalline photoresist as light-sensitive material.

In this blog, we will describe how photoresists are specifically designed and tested for the fabrication of elastomeric light tunable photonic devices — and how imaging with a scanning electron microscope (SEM) helped in the design improvement process.

Photonic devices are widely used in the physical sciences for creating, manipulating and detecting light. In the future, the challenge will be to fabricate advanced photonic devices, which will require flexibility and tunability. Fabricating these devices is not easy, as they require an advanced three-dimensional lithographic technique. Direct laser writing (DLW) is an interesting approach that aims to achieve this using a liquid crystalline photoresist as light-sensitive material.

In this blog, we will describe how photoresists are specifically designed and tested for the fabrication of elastomeric light tunable photonic devices — and how imaging with a scanning electron microscope (SEM) helped in the design improvement process.

Read more
Topics: Electronics, R&D

Press Room | Privacy Policy | Terms of Use | Sitemap