Karl Kersten

Karl Kersten is head of the Application team at Thermo Fisher Scientific, the world leader in serving science. He is passionate about the Thermo Fisher Scientific product and likes converting customer requirements into product or feature specifications so customers can achieve their goals.

Electron lenses and aberrations: what affects the resolution in electron microscopes?

By Karl Kersten - Aug 30, 2018

Resolution is one of the most important parameters in a scanning electron microscope (SEM). The lower the resolution, the smaller the features that can be seen. The resolution, which is typically not defined (and therefore measured) in a unique way, depends on the size of the beam when focused on the sample.

Resolution is one of the most important parameters in a scanning electron microscope (SEM). The lower the resolution, the smaller the features that can be seen. The resolution, which is typically not defined (and therefore measured) in a unique way, depends on the size of the beam when focused on the sample.

Read more

Why SEM is the most suitable method for fiber analysis

By Karl Kersten - Aug 23, 2018

Fibers are all around us. Different types of fibers exist, but in most cases we do not notice them because they are used in a product. In case an object is much longer as it is wide we consider it a fiber. Fibers have specific properties for the product in which they are used. This blog will describe the different ways these fibers can be classified and how their performance can best be analysed. Hint: it has something to do with putting fibers under a specific type of microscope. You're about to discover the most suitable method for fiber analysis, so do read on!

Fibers are all around us. Different types of fibers exist, but in most cases we do not notice them because they are used in a product. In case an object is much longer as it is wide we consider it a fiber. Fibers have specific properties for the product in which they are used. This blog will describe the different ways these fibers can be classified and how their performance can best be analysed. Hint: it has something to do with putting fibers under a specific type of microscope. You're about to discover the most suitable method for fiber analysis, so do read on!

Read more

Automated scanning electron microscopy (SEM) imaging: how it's used

By Karl Kersten - Aug 16, 2018

In a previous blog, we described how automating scanning electron microscopy (SEM) imaging saves researchers and operators valuable time. A lot of scanning electron microscope users use this for a wide range of purposes. This blog shows an example of how automated SEM imaging is used in the field: it details performing an automated Laser-Induced Damage Threshold test (LIDT).

In a previous blog, we described how automating scanning electron microscopy (SEM) imaging saves researchers and operators valuable time. A lot of scanning electron microscope users use this for a wide range of purposes. This blog shows an example of how automated SEM imaging is used in the field: it details performing an automated Laser-Induced Damage Threshold test (LIDT).

Read more

Buying a scanning electron microscope: how to select the right SEM

By Karl Kersten - Aug 2, 2018

You want to buy a new scanning electron microscope (SEM) because you know you need more SEM capability. Maybe you have a traditional floor model SEM, but it is slow and complicated to operate. Maybe you are using an outside service and the turn-around time is unacceptably long.

You’ve made your case that your company could significantly improve their business performance and you could do your job better if SEM imaging and analysis were easier, faster and more accessible. Can a desktop SEM do what you need? This article provides the answers and helps you to select the right SEM.

You want to buy a new scanning electron microscope (SEM) because you know you need more SEM capability. Maybe you have a traditional floor model SEM, but it is slow and complicated to operate. Maybe you are using an outside service and the turn-around time is unacceptably long.

You’ve made your case that your company could significantly improve their business performance and you could do your job better if SEM imaging and analysis were easier, faster and more accessible. Can a desktop SEM do what you need? This article provides the answers and helps you to select the right SEM.

Read more

Sample degradation during SEM analysis: what causes it and how to slow down the process

By Karl Kersten - Jul 19, 2018

When using a scanning electron microscope (SEM), the electron beam can, over time, permanently alter or degrade the sample that is being observed. Sample degradation is an unwanted effect as it can alter — or even destroy — the details you want to see, and consequently change your results and conclusions. In this blog, I will explain what can cause sample degradation, and how you can slow down the process.

When using a scanning electron microscope (SEM), the electron beam can, over time, permanently alter or degrade the sample that is being observed. Sample degradation is an unwanted effect as it can alter — or even destroy — the details you want to see, and consequently change your results and conclusions. In this blog, I will explain what can cause sample degradation, and how you can slow down the process.

Read more

The Phenom Process Automation: mixing backscattered and secondary electron images using a Python script

By Karl Kersten - Jun 28, 2018

When the primary beam interacts with the sample, backscattered electrons (BSEs) and secondary electrons (SEs) are generated. Images of the samples obtained by detecting the emitted signals, carry information on the composition (for BSE signals) and on the topography (for SE signals). How are BSEs and SEs formed and why do they carry specific information? Moreover, is it possible to get both compositional and topographical information in one image? And how flexible is this solution? In this blog, I will answer these questions and introduce a script that allows users to mix their own images.

When the primary beam interacts with the sample, backscattered electrons (BSEs) and secondary electrons (SEs) are generated. Images of the samples obtained by detecting the emitted signals, carry information on the composition (for BSE signals) and on the topography (for SE signals). How are BSEs and SEs formed and why do they carry specific information? Moreover, is it possible to get both compositional and topographical information in one image? And how flexible is this solution? In this blog, I will answer these questions and introduce a script that allows users to mix their own images.

Read more

SEM working principle: the detection of backscattered electrons

By Karl Kersten - Jun 14, 2018

Backscattered electrons (BSEs) are high-energy electrons that are produced by the elastic scattering of the primary beam electrons with the atom nuclei. The yield of BSEs, that is the ratio of the number of emitted BSEs and the amount of primary beam electrons, depends on the atomic number: the higher the atomic number, or the heavier the element, the brighter the contrast. In the Phenom SEM, BSEs are detected using four-quadrant semiconductor detectors placed above the sample. In this blog, we will explain what a semiconductor detector is and how backscattered electrons are detected in a scanning electron microscope.

Backscattered electrons (BSEs) are high-energy electrons that are produced by the elastic scattering of the primary beam electrons with the atom nuclei. The yield of BSEs, that is the ratio of the number of emitted BSEs and the amount of primary beam electrons, depends on the atomic number: the higher the atomic number, or the heavier the element, the brighter the contrast. In the Phenom SEM, BSEs are detected using four-quadrant semiconductor detectors placed above the sample. In this blog, we will explain what a semiconductor detector is and how backscattered electrons are detected in a scanning electron microscope.

Read more

How a desktop SEM saves lab operators a lot of time

By Karl Kersten - Apr 6, 2018

Is it true that as a lab operator, you work under constant time pressure? Do you find it challenging to deliver output quickly? And does it take hard work to maintain your high standard of quality? This blogs explains how a desktop scanning electron microscope (SEM) can be used to increase your research productivity and therefore to save a lot of time.

Is it true that as a lab operator, you work under constant time pressure? Do you find it challenging to deliver output quickly? And does it take hard work to maintain your high standard of quality? This blogs explains how a desktop scanning electron microscope (SEM) can be used to increase your research productivity and therefore to save a lot of time.

Read more

How scanning electron microscopy is used for cosmetics research and development

By Karl Kersten - Mar 29, 2018

Since ancient Egyptian times, cosmetic products have been used to enhance the human appearance. Research around cosmetics therefore deals not only with the development of new substances and the analysis and enhancement of existing ones, but also with the interaction of components with tissue. In this short blog, we introduce you to three examples that show the link between research within the cosmetic industry and scanning electron microscopy (SEM).

 

Since ancient Egyptian times, cosmetic products have been used to enhance the human appearance. Research around cosmetics therefore deals not only with the development of new substances and the analysis and enhancement of existing ones, but also with the interaction of components with tissue. In this short blog, we introduce you to three examples that show the link between research within the cosmetic industry and scanning electron microscopy (SEM).

 

Read more

How SEM helps perform automated quality control on phosphate coatings

By Karl Kersten - Mar 16, 2018

We are surrounded by products that, for either decorative or functional purposes, are covered with coatings; from paintings and lacquers, to adhesive or protective coatings, optical, catalytic or insulating coatings. Of all these coatings, conversion phosphate coatings play an important role, especially in the automotive industry: they are used for corrosion resistance and lubricity. Since these coatings are used for critical parts, the coating process must undergo thorough quality checks. These checks consist of the analysis of the morphology of the coating as well as the percentage of coverage. In this blog, we describe and analyze how automated tools combined with SEMs can be helpful in quality checking phosphate coatings.

We are surrounded by products that, for either decorative or functional purposes, are covered with coatings; from paintings and lacquers, to adhesive or protective coatings, optical, catalytic or insulating coatings. Of all these coatings, conversion phosphate coatings play an important role, especially in the automotive industry: they are used for corrosion resistance and lubricity. Since these coatings are used for critical parts, the coating process must undergo thorough quality checks. These checks consist of the analysis of the morphology of the coating as well as the percentage of coverage. In this blog, we describe and analyze how automated tools combined with SEMs can be helpful in quality checking phosphate coatings.

Read more

Press Room | Privacy Policy | Terms of Use | Sitemap