Karl Kersten

Karl Kersten is head of the Application team at Thermo Fisher Scientific, the world leader in serving science. He is passionate about the Thermo Fisher Scientific product and likes converting customer requirements into product or feature specifications so customers can achieve their goals.

How this engineering company supercharged their R&D process with SEM

By Karl Kersten - Nov 13, 2018

As device dimensions are shrinking, engineers and researchers are required to work on nanoscale levels. As a result, new technology is needed to create and evaluate structures during the R&D process. Luckily in turn, the physical size of this technology is getting smaller too. 

As device dimensions are shrinking, engineers and researchers are required to work on nanoscale levels. As a result, new technology is needed to create and evaluate structures during the R&D process. Luckily in turn, the physical size of this technology is getting smaller too. 

Read more

How sample preparation for SEM helps lab operators produce images faster

By Karl Kersten - Nov 1, 2018

As a seasoned lab operator, you work with microscopes for the majority of the day, and are very specialized in sample preparation and handling the SEM system. And it’s a responsible job: your output leads to the overall improvement of your company’s products and company results. Therefore, the quality of your work must be outstanding. But at the same time, you want to deliver output quickly. 

As a seasoned lab operator, you work with microscopes for the majority of the day, and are very specialized in sample preparation and handling the SEM system. And it’s a responsible job: your output leads to the overall improvement of your company’s products and company results. Therefore, the quality of your work must be outstanding. But at the same time, you want to deliver output quickly. 

Read more

How SEM helps to detect additive manufacturing defects in a 3D-printed object

By Karl Kersten - Oct 11, 2018

3D printing, or additive manufacturing (AM), refers to processes that are used to make 3D printed objects. In order to achieve this, successive layers of material are formed under computer control to create an object. The objects can have almost any shape or geometry and are produced using digital data from a 3D model or other electronic data source.

But successive layers formed under computer control can result in structural interruptions or defects that negatively affect the reliability of an 3D printed object. And these undesirable defects  should not go undetected; something we discuss in this blog later on. But first, more about 3D printing.

3D printing, or additive manufacturing (AM), refers to processes that are used to make 3D printed objects. In order to achieve this, successive layers of material are formed under computer control to create an object. The objects can have almost any shape or geometry and are produced using digital data from a 3D model or other electronic data source.

But successive layers formed under computer control can result in structural interruptions or defects that negatively affect the reliability of an 3D printed object. And these undesirable defects  should not go undetected; something we discuss in this blog later on. But first, more about 3D printing.

Read more

Backscattered electron imaging explained

By Karl Kersten - Oct 4, 2018

 Backscattered electrons (BSEs) are generated by elastic scattering events. When the electrons in the primary beam travel close to the atom’s nuclei in the specimen, their trajectory is deviated due to the force they feel with the positive charges in the nuclei. Depending on the size of the atom nuclei, the number of backscattered electrons differs. This is the basic principle of BSE image contrast. In this blog we introduce the backscattering coefficient and explain how it is influenced by the inclination of the sample and the primary beam energy.

 Backscattered electrons (BSEs) are generated by elastic scattering events. When the electrons in the primary beam travel close to the atom’s nuclei in the specimen, their trajectory is deviated due to the force they feel with the positive charges in the nuclei. Depending on the size of the atom nuclei, the number of backscattered electrons differs. This is the basic principle of BSE image contrast. In this blog we introduce the backscattering coefficient and explain how it is influenced by the inclination of the sample and the primary beam energy.

Read more

STOP outsourcing your scanning electron microscopy research — get your own SEM!

By Karl Kersten - Sep 6, 2018

Are you a lab operator who wants to stop outsourcing your scanning electron microscopy jobs and buy your own Scanning Electron Microscope? Then you’ve probably already calculated that a personal SEM is a worthwhile capital investment. But the operational costs of SEM are just as important too: all the ongoing equipment expenses related to an SEM like the facilities, its maintenance, and operators.

Are you a lab operator who wants to stop outsourcing your scanning electron microscopy jobs and buy your own Scanning Electron Microscope? Then you’ve probably already calculated that a personal SEM is a worthwhile capital investment. But the operational costs of SEM are just as important too: all the ongoing equipment expenses related to an SEM like the facilities, its maintenance, and operators.

Read more

Why SEM is the most suitable method for fiber analysis

By Karl Kersten - Aug 23, 2018

Fibers are all around us. Different types of fibers exist, but in most cases we do not notice them because they are used in a product. In case an object is much longer as it is wide we consider it a fiber. Fibers have specific properties for the product in which they are used. This blog will describe the different ways these fibers can be classified and how their performance can best be analysed. Hint: it has something to do with putting fibers under a specific type of microscope. You're about to discover the most suitable method for fiber analysis, so do read on!

Fibers are all around us. Different types of fibers exist, but in most cases we do not notice them because they are used in a product. In case an object is much longer as it is wide we consider it a fiber. Fibers have specific properties for the product in which they are used. This blog will describe the different ways these fibers can be classified and how their performance can best be analysed. Hint: it has something to do with putting fibers under a specific type of microscope. You're about to discover the most suitable method for fiber analysis, so do read on!

Read more

Automated scanning electron microscopy (SEM) imaging: how it's used

By Karl Kersten - Aug 16, 2018

In a previous blog, we described how automating scanning electron microscopy (SEM) imaging saves researchers and operators valuable time. A lot of scanning electron microscope users use this for a wide range of purposes. This blog shows an example of how automated SEM imaging is used in the field: it details performing an automated Laser-Induced Damage Threshold test (LIDT).

In a previous blog, we described how automating scanning electron microscopy (SEM) imaging saves researchers and operators valuable time. A lot of scanning electron microscope users use this for a wide range of purposes. This blog shows an example of how automated SEM imaging is used in the field: it details performing an automated Laser-Induced Damage Threshold test (LIDT).

Read more

Buying a scanning electron microscope: how to select the right SEM

By Karl Kersten - Aug 2, 2018

You want to buy a new scanning electron microscope (SEM) because you know you need more SEM capability. Maybe you have a traditional floor model SEM, but it is slow and complicated to operate. Maybe you are using an outside service and the turn-around time is unacceptably long.

You’ve made your case that your company could significantly improve their business performance and you could do your job better if SEM imaging and analysis were easier, faster and more accessible. Can a desktop SEM do what you need? This article provides the answers and helps you to select the right SEM.

You want to buy a new scanning electron microscope (SEM) because you know you need more SEM capability. Maybe you have a traditional floor model SEM, but it is slow and complicated to operate. Maybe you are using an outside service and the turn-around time is unacceptably long.

You’ve made your case that your company could significantly improve their business performance and you could do your job better if SEM imaging and analysis were easier, faster and more accessible. Can a desktop SEM do what you need? This article provides the answers and helps you to select the right SEM.

Read more

Sample degradation during SEM analysis: what causes it and how to slow down the process

By Karl Kersten - Jul 19, 2018

When using a scanning electron microscope (SEM), the electron beam can, over time, permanently alter or degrade the sample that is being observed. Sample degradation is an unwanted effect as it can alter — or even destroy — the details you want to see, and consequently change your results and conclusions. In this blog, I will explain what can cause sample degradation, and how you can slow down the process.

When using a scanning electron microscope (SEM), the electron beam can, over time, permanently alter or degrade the sample that is being observed. Sample degradation is an unwanted effect as it can alter — or even destroy — the details you want to see, and consequently change your results and conclusions. In this blog, I will explain what can cause sample degradation, and how you can slow down the process.

Read more

How a desktop SEM saves lab operators a lot of time

By Karl Kersten - Apr 6, 2018

Is it true that as a lab operator, you work under constant time pressure? Do you find it challenging to deliver output quickly? And does it take hard work to maintain your high standard of quality? This blogs explains how a desktop scanning electron microscope (SEM) can be used to increase your research productivity and therefore to save a lot of time.

Is it true that as a lab operator, you work under constant time pressure? Do you find it challenging to deliver output quickly? And does it take hard work to maintain your high standard of quality? This blogs explains how a desktop scanning electron microscope (SEM) can be used to increase your research productivity and therefore to save a lot of time.

Read more

Press Room | Privacy Policy | Terms of Use | Sitemap