Blog

SEM and fiber analysis for filtration systems quality control

By Luigi Raspolini - Feb 16, 2018

The production of filters and membranes undergoes several quality control steps to ensure that the properties of the product are up to specification. Different tools can be used for such analysis, but only one can provide the best results. Find out in this blog how Scanning Electron Microscopes (SEM) can be used to investigate imperfections in metallic filters.

The production of filters and membranes undergoes several quality control steps to ensure that the properties of the product are up to specification. Different tools can be used for such analysis, but only one can provide the best results. Find out in this blog how Scanning Electron Microscopes (SEM) can be used to investigate imperfections in metallic filters.

Read more

SEM and TEM: what's the difference?

By Antonis Nanakoudis - Feb 8, 2018

Electron microscopes have emerged as a powerful tool for the characterization of a wide range of materials. Their versatility and extremely high spatial resolution render them a very valuable tool for many applications. The two main types of electron microscopes are the Transmission Electron Microscope (TEM) and the Scanning Electron Microscope (SEM). In this blog we briefly describe their similarities and differences.

Electron microscopes have emerged as a powerful tool for the characterization of a wide range of materials. Their versatility and extremely high spatial resolution render them a very valuable tool for many applications. The two main types of electron microscopes are the Transmission Electron Microscope (TEM) and the Scanning Electron Microscope (SEM). In this blog we briefly describe their similarities and differences.

Read more

Emission stability in SEM thermionic electron sources: CeB6, LaB6 and W filaments

By Marijke Scotuzzi - Feb 1, 2018

Typically, desktop scanning electron microscopes (SEM) make use of thermionic sources, from which electrons are emitted when warming up the SEM filament. Although the working principles are the same, different thermionic sources show a different performance. Phenom SEMs are equipped with a CeB6 source because of its higher brightness and longer lifetime. A parameter that plays a crucial role is the emission current stability. How is the CeB6 source performing in terms of stability? What are the engineering smarts that enable the Phenom source to maximize a CeB6 source's potential? This blog answers these questions.

Typically, desktop scanning electron microscopes (SEM) make use of thermionic sources, from which electrons are emitted when warming up the SEM filament. Although the working principles are the same, different thermionic sources show a different performance. Phenom SEMs are equipped with a CeB6 source because of its higher brightness and longer lifetime. A parameter that plays a crucial role is the emission current stability. How is the CeB6 source performing in terms of stability? What are the engineering smarts that enable the Phenom source to maximize a CeB6 source's potential? This blog answers these questions.

Read more

Food science research: how scanning electron microscopy is used

By Dr. Jasmin Zahn - Jan 25, 2018

In food sciences, researchers face many different and challenging microscopy tasks: from particle and fiber analysis, to food preservation, food microbiology and food pathogens. Many different microscopy techniques are used within food science. Food science research and scanning electron microscopy (SEM) have been strongly related for many years. SEM can be used in various studies from herbs to fruits, and from engineered food to natural components. This blog should offer you some insights into how SEM is used and what benefits and challenges go along with its use.

In food sciences, researchers face many different and challenging microscopy tasks: from particle and fiber analysis, to food preservation, food microbiology and food pathogens. Many different microscopy techniques are used within food science. Food science research and scanning electron microscopy (SEM) have been strongly related for many years. SEM can be used in various studies from herbs to fruits, and from engineered food to natural components. This blog should offer you some insights into how SEM is used and what benefits and challenges go along with its use.

Read more
Topics: life sciences

How-to: high-quality fiber analysis through proper SEM sample preparation

By Marijke Scotuzzi - Jan 18, 2018

Fibers are generally imaged in a scanning electron microscope (SEM), which provides high-resolution images, elemental analysis, and the possibility of automatically measuring thousands of fibers in mere minutes. But in some cases, imaging fibers with a SEM also presents challenges as the nature of some fibers might compromise the quality of your analysis. With this in mind, this blog describes how you can obtain high-quality imaging and fiber analysis through proper SEM configuration and sample preparation.

Fibers are generally imaged in a scanning electron microscope (SEM), which provides high-resolution images, elemental analysis, and the possibility of automatically measuring thousands of fibers in mere minutes. But in some cases, imaging fibers with a SEM also presents challenges as the nature of some fibers might compromise the quality of your analysis. With this in mind, this blog describes how you can obtain high-quality imaging and fiber analysis through proper SEM configuration and sample preparation.

Read more

SEM & EDS: contamination detection and chemical composition analysis equipment

By Luigi Raspolini - Jan 12, 2018

Imperfections and small malfunctions in machines can sometimes cause contamination of the final products that roll off the production line. Metal particles can detach from the moving part of machines because of usage and friction and deposit on the product, sometimes compromising its quality irreversibly. This blog describes a technique that not only allows you to inspect for the presence of contamination, but also to identify its origination.

Imperfections and small malfunctions in machines can sometimes cause contamination of the final products that roll off the production line. Metal particles can detach from the moving part of machines because of usage and friction and deposit on the product, sometimes compromising its quality irreversibly. This blog describes a technique that not only allows you to inspect for the presence of contamination, but also to identify its origination.

Read more
Topics: EDX

Automated scanning electron microscopy analysis: how it's used

By Ruud Bernsen - Jan 4, 2018

In my previous blog, I described how automating scanning electron microscopy (SEM) analysis saves researchers and operators valuable time. A lot of scanning electron microscope users use this for a wide range of purposes. This blog shows an example of how SEM automation is used in the field: it details performing an automated Laser-Induced Damage Threshold test (LIDT).


In my previous blog, I described how automating scanning electron microscopy (SEM) analysis saves researchers and operators valuable time. A lot of scanning electron microscope users use this for a wide range of purposes. This blog shows an example of how SEM automation is used in the field: it details performing an automated Laser-Induced Damage Threshold test (LIDT).


Read more

How scanning electron microscopy is used for cell biology research

By Dr. Jasmin Zahn - Dec 28, 2017

Although the very first electron microscopy (EM) images of eukaryotic cells were attributed in 1945, it was the Ruska family that not only developed the EM, but also pioneered in the field of infections with pictures of bacteria and viruses. It took until 1949 until the cell’s internal structures were first shown when samples for the first time were embedded in plastic to enable thin sections and.

In early studies the focus was set on cellular organelles. Mitochondria and endoplasmic reticulum were the first organelles to be described in greater detail. Brain tissue observations on a cellular structure were also started as a transmission electron microscopy (TEM) project. During the times of intense research using TEM, scanning electron microscopy (SEM) was only just beginning to appear as a tool for imaging surface topography, until it was brought to light in the 1960s and 1970s [1]. This blog should offer you some insights into recent projects involving SEM in cell biological applications.

Although the very first electron microscopy (EM) images of eukaryotic cells were attributed in 1945, it was the Ruska family that not only developed the EM, but also pioneered in the field of infections with pictures of bacteria and viruses. It took until 1949 until the cell’s internal structures were first shown when samples for the first time were embedded in plastic to enable thin sections and.

In early studies the focus was set on cellular organelles. Mitochondria and endoplasmic reticulum were the first organelles to be described in greater detail. Brain tissue observations on a cellular structure were also started as a transmission electron microscopy (TEM) project. During the times of intense research using TEM, scanning electron microscopy (SEM) was only just beginning to appear as a tool for imaging surface topography, until it was brought to light in the 1960s and 1970s [1]. This blog should offer you some insights into recent projects involving SEM in cell biological applications.

Read more
Topics: life sciences

Inside a scanning electron microscope: the SEM electron column explained

By Marijke Scotuzzi - Dec 21, 2017

Scanning electron microscopes (SEMs) use an electron beam to image samples with a resolution down to the nanometer scale. The electrons are emitted from a filament and collimated into a beam in the electron source. The beam is then focused on the sample surface by a set of lenses in the electron column. How does an electron lens work? And which kind of lenses exist? How are lenses combined to form an electron column? In this blog, we will answer these questions and give a general insight into the working principle of an electron column.

Scanning electron microscopes (SEMs) use an electron beam to image samples with a resolution down to the nanometer scale. The electrons are emitted from a filament and collimated into a beam in the electron source. The beam is then focused on the sample surface by a set of lenses in the electron column. How does an electron lens work? And which kind of lenses exist? How are lenses combined to form an electron column? In this blog, we will answer these questions and give a general insight into the working principle of an electron column.

Read more

How scanning electron microscopy impacts dental studies

By Dr. Jasmin Zahn - Dec 14, 2017

Microscopy is known to be a versatile tool in dental studies. Not only is optical microscopy used in day-to-day practices in dental clinics, but due to the surface information electron microscopy offers, it is used within a large variety of research subjects. With the following examples we want to offer more insights into how in detail scanning electron microscopy (SEM) is utilized within various dental studies.

Microscopy is known to be a versatile tool in dental studies. Not only is optical microscopy used in day-to-day practices in dental clinics, but due to the surface information electron microscopy offers, it is used within a large variety of research subjects. With the following examples we want to offer more insights into how in detail scanning electron microscopy (SEM) is utilized within various dental studies.

Read more
Topics: life sciences

Press Room | Privacy Policy | Disclaimer | Sitemap