Blog

Sample preparation: how to disperse powder for amazing SEM images

By Willem van Zyl - Nov 16, 2018

The ability to analyze particles is becoming increasingly more important due to the rising prominence of additive manufacturing, leading to more stringent quality requirements for industrial manufacturers. Beyond maximizing yields, manufacturers need to ensure that their processes consistently deliver particles that have the appropriate size and morphology.

The ability to analyze particles is becoming increasingly more important due to the rising prominence of additive manufacturing, leading to more stringent quality requirements for industrial manufacturers. Beyond maximizing yields, manufacturers need to ensure that their processes consistently deliver particles that have the appropriate size and morphology.

Read more

How this engineering company supercharged their R&D process with SEM

By Karl Kersten - Nov 13, 2018

As device dimensions are shrinking, engineers and researchers are required to work on nanoscale levels. As a result, new technology is needed to create and evaluate structures during the R&D process. Luckily in turn, the physical size of this technology is getting smaller too. 

As device dimensions are shrinking, engineers and researchers are required to work on nanoscale levels. As a result, new technology is needed to create and evaluate structures during the R&D process. Luckily in turn, the physical size of this technology is getting smaller too. 

Read more

How research on new material can help minimize environmental damage

By Dr. Jasmin Zahn - Nov 8, 2018

In science, efforts are rising exploring options that help minimize environmental damage. To understand how environmental damage can be minimized it is worthwhile to research new materials. We would like to show you an example taken from fiber development to illustrate the possibilities new materials provide. This example is particularly interesting for anyone working in the materials science field.

In science, efforts are rising exploring options that help minimize environmental damage. To understand how environmental damage can be minimized it is worthwhile to research new materials. We would like to show you an example taken from fiber development to illustrate the possibilities new materials provide. This example is particularly interesting for anyone working in the materials science field.

Read more

Do you have repetitive SEM work? Use automated SEM analysis!

By Ruud Bernsen - Nov 6, 2018

Obtaining images is what it is all about in the microscopy business. While searching for that one particle or defect is part of the job, doing this for hundreds of particles or samples is time-consuming work and might not be very challenging. So why not automate your SEM analysis?

Obtaining images is what it is all about in the microscopy business. While searching for that one particle or defect is part of the job, doing this for hundreds of particles or samples is time-consuming work and might not be very challenging. So why not automate your SEM analysis?

Read more

How sample preparation for SEM helps lab operators produce images faster

By Karl Kersten - Nov 1, 2018

As a seasoned lab operator, you work with microscopes for the majority of the day, and are very specialized in sample preparation and handling the SEM system. And it’s a responsible job: your output leads to the overall improvement of your company’s products and company results. Therefore, the quality of your work must be outstanding. But at the same time, you want to deliver output quickly. 

As a seasoned lab operator, you work with microscopes for the majority of the day, and are very specialized in sample preparation and handling the SEM system. And it’s a responsible job: your output leads to the overall improvement of your company’s products and company results. Therefore, the quality of your work must be outstanding. But at the same time, you want to deliver output quickly. 

Read more

Using a SEM in packaging material development and analysis

By Luigi Raspolini - Oct 25, 2018

Nowadays, the packaging industry is one of the fastest growing in terms of technology advancement and employing the latest available scientific developments. The reason lies in the greater demand for products and the upscale of shipments from regional transport to worldwide delivery. To ensure that the technologies are integrated in the right way, and to verify the quality of such introductions, more advanced inspection tools are required and scanning electron microscopes (SEM) play an increasingly important role in the material development. This blog will highlight some of the most common uses of electron microscopy within this field of application.

Nowadays, the packaging industry is one of the fastest growing in terms of technology advancement and employing the latest available scientific developments. The reason lies in the greater demand for products and the upscale of shipments from regional transport to worldwide delivery. To ensure that the technologies are integrated in the right way, and to verify the quality of such introductions, more advanced inspection tools are required and scanning electron microscopes (SEM) play an increasingly important role in the material development. This blog will highlight some of the most common uses of electron microscopy within this field of application.

Read more
Topics: R&D

SEM automation guidelines for small script development: simulation and reporting

By Wouter Arts - Oct 18, 2018

Scripts are small automated software tools that can help a scanning electron microscope (SEM) user work more efficiently. In my previous blogs, I have explained how we can use the Phenom SEM with the Phenom programmable interface (PPI) to automate the process of acquiring, analyzing and evaluating images. In this blog, I will add the Phenom PPI simulator to that and explain how you can generate and export reports using PPI. 

Scripts are small automated software tools that can help a scanning electron microscope (SEM) user work more efficiently. In my previous blogs, I have explained how we can use the Phenom SEM with the Phenom programmable interface (PPI) to automate the process of acquiring, analyzing and evaluating images. In this blog, I will add the Phenom PPI simulator to that and explain how you can generate and export reports using PPI. 

Read more

How SEM helps to detect additive manufacturing defects in a 3D-printed object

By Karl Kersten - Oct 11, 2018

3D printing, or additive manufacturing (AM), refers to processes that are used to make 3D printed objects. In order to achieve this, successive layers of material are formed under computer control to create an object. The objects can have almost any shape or geometry and are produced using digital data from a 3D model or other electronic data source.

But successive layers formed under computer control can result in structural interruptions or defects that negatively affect the reliability of an 3D printed object. And these undesirable defects  should not go undetected; something we discuss in this blog later on. But first, more about 3D printing.

3D printing, or additive manufacturing (AM), refers to processes that are used to make 3D printed objects. In order to achieve this, successive layers of material are formed under computer control to create an object. The objects can have almost any shape or geometry and are produced using digital data from a 3D model or other electronic data source.

But successive layers formed under computer control can result in structural interruptions or defects that negatively affect the reliability of an 3D printed object. And these undesirable defects  should not go undetected; something we discuss in this blog later on. But first, more about 3D printing.

Read more

Backscattered electron imaging explained

By Karl Kersten - Oct 4, 2018

 Backscattered electrons (BSEs) are generated by elastic scattering events. When the electrons in the primary beam travel close to the atom’s nuclei in the specimen, their trajectory is deviated due to the force they feel with the positive charges in the nuclei. Depending on the size of the atom nuclei, the number of backscattered electrons differs. This is the basic principle of BSE image contrast. In this blog we introduce the backscattering coefficient and explain how it is influenced by the inclination of the sample and the primary beam energy.

 Backscattered electrons (BSEs) are generated by elastic scattering events. When the electrons in the primary beam travel close to the atom’s nuclei in the specimen, their trajectory is deviated due to the force they feel with the positive charges in the nuclei. Depending on the size of the atom nuclei, the number of backscattered electrons differs. This is the basic principle of BSE image contrast. In this blog we introduce the backscattering coefficient and explain how it is influenced by the inclination of the sample and the primary beam energy.

Read more

Why do your materials break? Tensile testing: inspecting the breaking mechanisms of materials with SEM

By Luigi Raspolini - Sep 27, 2018

Tensile testing is a commonly-used analysis that provides information on the resilience of an object and how much resistance it can offer to traction or compression. Such tests can be performed on a large variety of materials and provide useful information to speculate on the behavior of a material when it undergoes a stress. The main purpose of the tensile test is to evaluate relevant parameters (like the Young's modulus, for example) or to study the how shear stress affects the material. This allows researchers to create models and design better materials. But how can you see what is happening? A scanning electron microscope (SEM) with tensile testing capabilities can provide you with that information.

Tensile testing is a commonly-used analysis that provides information on the resilience of an object and how much resistance it can offer to traction or compression. Such tests can be performed on a large variety of materials and provide useful information to speculate on the behavior of a material when it undergoes a stress. The main purpose of the tensile test is to evaluate relevant parameters (like the Young's modulus, for example) or to study the how shear stress affects the material. This allows researchers to create models and design better materials. But how can you see what is happening? A scanning electron microscope (SEM) with tensile testing capabilities can provide you with that information.

Read more

Press Room | Privacy Policy | Terms of Use | Sitemap