Blog

Imaging fibers with a SEM: how to obtain a flawless quality analysis

By Marijke Scotuzzi - Jun 22, 2017

In our daily life, we make use of a large amount of objects and devices that are produced from fibers. Fibers are generally imaged in a scanning electron microscope (SEM), which provides high-resolution images, elemental analysis, and the possibility of automatically measuring thousands of fibers in mere minutes. But imaging fibers with a SEM also presents challenges in some cases, as the nature of some kind of fibers might compromise the quality of your analysis. With this in mind, this blog describes how you can obtain a high analysis quality through proper SEM configuration and sample preparation. 

In our daily life, we make use of a large amount of objects and devices that are produced from fibers. Fibers are generally imaged in a scanning electron microscope (SEM), which provides high-resolution images, elemental analysis, and the possibility of automatically measuring thousands of fibers in mere minutes. But imaging fibers with a SEM also presents challenges in some cases, as the nature of some kind of fibers might compromise the quality of your analysis. With this in mind, this blog describes how you can obtain a high analysis quality through proper SEM configuration and sample preparation. 

Read more

How engineers and researchers can boost polymers properties with SEM

By Luigi Raspolini - Jun 16, 2017

Polymers have many uses and applications: engineered combinations of monomers produce a nearly infinite number of molecules with different properties, which are determined by the chemical composition and structure of the molecule. The form of the molecule has a big influence on how the polymer will behave when exposed to different external forces. In this blog, you’ll find practical examples of how Scanning Electron Microscopes (SEMs) can provide unexpected results.

Polymers have many uses and applications: engineered combinations of monomers produce a nearly infinite number of molecules with different properties, which are determined by the chemical composition and structure of the molecule. The form of the molecule has a big influence on how the polymer will behave when exposed to different external forces. In this blog, you’ll find practical examples of how Scanning Electron Microscopes (SEMs) can provide unexpected results.

Read more

How SEM helps discover suitable corrosion inhibitors

By Dr. Jasmin Zahn - Jun 12, 2017

Many industries would benefit from the inhibition of corrosion in metals. In the materials science field, scientists are therefore exploring ways to prevent or reduce corrosion. Many studies looking for suitable corrosion inhibitors have been carried out.

However, most of the inhibitors discovered and developed during those studies were synthetic chemicals, which are very expensive, and hazardous to the environment. Due to the characteristics of these chemicals, studies were carried out to investigate and analyze natural products that could be used as an anti-corrosion agent. SEM technology helped conduct these studies in an effective manner, something we will describe further in this article.

Many industries would benefit from the inhibition of corrosion in metals. In the materials science field, scientists are therefore exploring ways to prevent or reduce corrosion. Many studies looking for suitable corrosion inhibitors have been carried out.

However, most of the inhibitors discovered and developed during those studies were synthetic chemicals, which are very expensive, and hazardous to the environment. Due to the characteristics of these chemicals, studies were carried out to investigate and analyze natural products that could be used as an anti-corrosion agent. SEM technology helped conduct these studies in an effective manner, something we will describe further in this article.

Read more

What is SEM? SEM technology explained

By Antonis Nanakoudis - Jun 1, 2017

Scanning electron microscopy (SEM) has become a powerful and versatile tool for material characterization. This is especially so in recent years, due to the continuous shrinking of the dimension of materials used in various applications. In this blog, we describe the main working principles of a SEM instrument.

Scanning electron microscopy (SEM) has become a powerful and versatile tool for material characterization. This is especially so in recent years, due to the continuous shrinking of the dimension of materials used in various applications. In this blog, we describe the main working principles of a SEM instrument.

Read more

Why the plastics industry relies heavily on microscopy analysis

By Luigi Raspolini - May 26, 2017

Ever since oil became fundamental to industry, scientists and engineers from all around the world have carried out more and more research into how different organic molecules can be combined in certain patterns to obtain new materials with amazing properties. Commonly called plastics, they are known to the scientific community as polymers — chemical compounds with a highly-engineered chemical structure and composition. The analysis of these compounds is crucial in helping to improve polymer production processes. This article discusses how electron microscopy can provide the analysis that polymer developers need to improve product quality significantly.

Ever since oil became fundamental to industry, scientists and engineers from all around the world have carried out more and more research into how different organic molecules can be combined in certain patterns to obtain new materials with amazing properties. Commonly called plastics, they are known to the scientific community as polymers — chemical compounds with a highly-engineered chemical structure and composition. The analysis of these compounds is crucial in helping to improve polymer production processes. This article discusses how electron microscopy can provide the analysis that polymer developers need to improve product quality significantly.

Read more

Why SEM is the go-to technology for microfabrication evaluation

By Jake Wilkinson - May 19, 2017

The world of microfabrication is in a constant state of flux. With new technologies, new applications and more difficult problems to be solved, microfabrication is developing at such a speed that it will soon touch all our lives. In the past, microfabrication has been limited to using carbon and semi-conductor materials. But now, new commercial laser techniques, such as those used in the Technology & Applications Center (TAC) at Newport Corporation, are expanding the scope of microfabrication. The range of materials that can be worked on has been extended into polymers, composites, dielectrics and even ceramics. 

The world of microfabrication is in a constant state of flux. With new technologies, new applications and more difficult problems to be solved, microfabrication is developing at such a speed that it will soon touch all our lives. In the past, microfabrication has been limited to using carbon and semi-conductor materials. But now, new commercial laser techniques, such as those used in the Technology & Applications Center (TAC) at Newport Corporation, are expanding the scope of microfabrication. The range of materials that can be worked on has been extended into polymers, composites, dielectrics and even ceramics. 

Read more

How a microfabrication researcher uses SEM to verify nanoscale structures

By Jake Wilkinson - May 12, 2017

Microfabrication, the creation of microscale structures and features, is an essential tool for the creation of next-generation semiconductors, processors and the ‘lab-on-a-chip’ microfluidic systems found in chemical analysis systems that can fit in the palm of your hand. 

Microfabrication, the creation of microscale structures and features, is an essential tool for the creation of next-generation semiconductors, processors and the ‘lab-on-a-chip’ microfluidic systems found in chemical analysis systems that can fit in the palm of your hand. 

Read more

Why SEM is a valuable characterization technique for nanoparticles

By Antonis Nanakoudis - May 4, 2017

The continuous increase of microscopic particles’ use in a huge range of applications has created the need of accurate control of their properties. I will explain why the use of precise monitoring and characterization of particles is required and how scanning electron microscopy can prove to be a valuable characterization method for you. Especially due to its versatility and superior spatial resolution.   

The continuous increase of microscopic particles’ use in a huge range of applications has created the need of accurate control of their properties. I will explain why the use of precise monitoring and characterization of particles is required and how scanning electron microscopy can prove to be a valuable characterization method for you. Especially due to its versatility and superior spatial resolution.   

Read more

How SEM helps to detect defects in a 3D-printed object

By Dr. Jasmin Zahn - Apr 26, 2017

3D printing, or additive manufacturing (AM), refers to processes that are used to make 3D printed objects. In order to achieve this, successive layers of material are formed under computer control to create an object. The objects can have almost any shape or geometry and are produced using digital data from a 3D model or other electronic data source. But successive layers formed under computer control can result in structural interruptions that negatively affect the reliability of an object. And these undesirable interruptions should not go undetected; something we discuss in this blog later on. But first, more about 3D printing.

3D printing, or additive manufacturing (AM), refers to processes that are used to make 3D printed objects. In order to achieve this, successive layers of material are formed under computer control to create an object. The objects can have almost any shape or geometry and are produced using digital data from a 3D model or other electronic data source. But successive layers formed under computer control can result in structural interruptions that negatively affect the reliability of an object. And these undesirable interruptions should not go undetected; something we discuss in this blog later on. But first, more about 3D printing.

Read more
Topics: SEM, 3D printing

How knowledge of fiber properties led to the fabrication of a heart valve

By Dr. Jasmin Zahn - Apr 13, 2017

These days, fibers and fiber materials can be found in endless applications. A wide range of these materials is used everywhere from baby diapers to water filters, from applications in asbestos to the automotive industry. Because of their widespread use, a lot of research is carried out to alter fiber materials and enhance their properties. This includes research on components as well as on fiber preparation technologies. One example is the fabrication of a heart valve using differently engineered fibers, which is described in this blog in more detail.

These days, fibers and fiber materials can be found in endless applications. A wide range of these materials is used everywhere from baby diapers to water filters, from applications in asbestos to the automotive industry. Because of their widespread use, a lot of research is carried out to alter fiber materials and enhance their properties. This includes research on components as well as on fiber preparation technologies. One example is the fabrication of a heart valve using differently engineered fibers, which is described in this blog in more detail.

Read more

Press Room | Privacy Policy | Disclaimer | Sitemap